murburn

  • 文章类型: Journal Article
    Two decades of evidence-based exploratory pursuits in heme-flavin enzymology led to the formulation of a new biological electron/moiety transfer paradigm, called murburn concept. Murburn is a novel literary abstraction from \" mur ed burn ing\" or \" m ild u n r estricted burn ing\". This concept was invoked to explain the longstanding conundrum of maverick physiological dose responses and also applied to remodel the prevailing understanding of drug metabolism and cellular respiration. A conglomeration of simple ideas grounded in the known principles of thermodynamics and reaction chemistry, murburn concept invokes catalytic/functional roles for diffusible reactive species or radicals. Hitherto, diffusible reactive species were primarily seen as toxic agents of chaos, non-conducible to the maintenance of life-order. Since the murburn paradigm offers a distinctly different perspective for several biological phenomena, researchers holding conventional views of cellular metabolism pose a direct conflict of interests to the advancement of murburn concept. Murburn schemes are poised to integrate numerous metabolic motifs with holistic physiological outcomes; redefining pursuits in biology and medicine. To advance this agenda, I present a brief account of murburn concept and point out how redundant ideas are still advocated in some prestigious journals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Letter
    Two decades of evidence-based exploratory pursuits in heme-flavin enzymology led to the formulation of a new biological electron/moiety transfer paradigm, called murburn concept. Murburn is a novel literary abstraction from \"mured burning\" or \"mild unrestricted burning\". This concept was invoked to explain the longstanding conundrum of maverick physiological dose responses and also applied to remodel the prevailing understanding of drug metabolism and cellular respiration. A conglomeration of simple ideas grounded in the known principles of thermodynamics and reaction chemistry, murburn concept invokes catalytic/functional roles for diffusible reactive species or radicals. Hitherto, diffusible reactive species were primarily seen as toxic agents of chaos, non-conducible to the maintenance of life-order. Since the murburn paradigm offers a distinctly different perspective for several biological phenomena, researchers holding conventional views of cellular metabolism pose a direct conflict of interests to the advancement of murburn concept. Murburn schemes are poised to integrate numerous metabolic motifs with holistic physiological outcomes; redefining pursuits in biology and medicine. To advance this agenda, I present a brief account of murburn concept and point out how redundant ideas are still advocated in some prestigious journals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP\'s heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP\'s heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn (\"mured burning\" or \"mild unrestricted burning\") concept to explain heme enzymes\' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents\' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides\' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying murburn as the operative concept. The mechanism of uncoupling (peroxide/water formation) was found to be dependent on multiple one and two electron equilibriums amongst the reaction components. The investigation explains the evolutionary implications of xenobiotic metabolism, confirms the obligatory role of diffusible reactive species in routine redox metabolism within liver microsomes and establishes that a redox enzyme like CYP enhances reaction rates (achieves catalysis) via a novel (hitherto unknown) modality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号