fast inactivation

快速失活
  • 文章类型: Journal Article
    Venomous animals have evolved to produce peptide toxins that modulate the activity of voltage-gated sodium (Nav) channels. These specific modulators are powerful probes for investigating the structural and functional features of Nav channels. Here, we report the isolation and characterization of δ-theraphotoxin-Gr4b (Gr4b), a novel peptide toxin from the venom of the spider Grammostola rosea. Gr4b contains 37-amino acid residues with six cysteines forming three disulfide bonds. Patch-clamp analysis confirmed that Gr4b markedly slows the fast inactivation of Nav1.9 and inhibits the currents of Nav1.4 and Nav1.7, but does not affect Nav1.8. It was also found that Gr4b significantly shifts the steady-state activation and inactivation curves of Nav1.9 to the depolarization direction and increases the window current, which is consistent with the change in the ramp current. Furthermore, analysis of Nav1.9/Nav1.8 chimeric channels revealed that Gr4b preferentially binds to the voltage-sensor of domain III (DIII VSD) and has additional interactions with the DIV VSD. The site-directed mutagenesis analysis indicated that N1139 and L1143 in DIII S3-S4 linker participate in toxin binding. In sum, this study reports a novel spider peptide toxin that may slow the fast inactivation of Nav1.9 by binding to the new neurotoxin receptor site-DIII VSD. Taken together, these findings provide insight into the functional role of the Nav channel DIII VSD in fast inactivation and activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从电压传感器到失活门的运动传输是离子通道一般生理学中的重要问题。在通道hNav1.5的低温EM结构中,胞外环IVP2-S6中的残基N1736和R1739分别接近谷氨酸E1225和E1295,在电压传感域III(VSD-III)中。ClinVar报告的变体E1230K,E1295K,和R1739W/Q和其他变体在环IVP2-S6,IIIS1-S2和IIIS3-S4与心律失常有关,强调IVP2-S6和VSD-III之间的接口是疾病突变的热点。由这些突变引起的通道功能障碍的原子机制是未知的。这里,我们产生了突变体E1295R,R1739E,E1295R/R1739E,和N1736R,在HEK-293T细胞中表达,并探索了生物物理特性。突变E1295R减少了稳态快速失活和增强的稳态缓慢失活。相比之下,突变R1739E轻微增强快速失活和减弱缓慢失活。双突变体E1295R/R1739E的特征与野生型通道的特征相当相似。突变N1736R减弱缓慢失活。分子建模预测了R1739E与激活的电压感应螺旋IIIS4中最外层赖氨酸的盐桥接。相比之下,功能缺失替代E1295R排斥R1739,从而使激活的VSD-III不稳定,这与我们的E1295R引起G-V曲线去极化偏移的数据一致.在约束维持的盐桥E1295-R1739下,VSD-III的计算机模拟失活导致以下变化:1)IIIS4和IVS5之间的接触被切换;2)接头-螺旋IIIS4-S5与IVS5,IVS6的接触和快速失活三肽IFM被修饰;3)IFM三肽与螺旋IVS5和IVS6的接触有助于缓慢的IVS6中的螺旋变化。停用的VSD-III中的盐桥E1295-R1739的可能性得到了泊松-玻尔兹曼计算和循环IVP2-S6的状态相关能量学的支持。一起来看,我们的结果表明,IVP2-S6环路参与了从VSD-III到失活门的运动传递.
    Motion transmission from voltage sensors to inactivation gates is an important problem in the general physiology of ion channels. In a cryo-EM structure of channel hNav1.5, residues N1736 and R1739 in the extracellular loop IVP2-S6 approach glutamates E1225 and E1295, respectively, in the voltage-sensing domain III (VSD-III). ClinVar-reported variants E1230K, E1295K, and R1739W/Q and other variants in loops IVP2-S6, IIIS1-S2, and IIIS3-S4 are associated with cardiac arrhythmias, highlighting the interface between IVP2-S6 and VSD-III as a hot spot of disease mutations. Atomic mechanisms of the channel dysfunction caused by these mutations are unknown. Here, we generated mutants E1295R, R1739E, E1295R/R1739E, and N1736R, expressed them in HEK-293T cells, and explored biophysical properties. Mutation E1295R reduced steady-state fast inactivation and enhanced steady-state slow inactivation. In contrast, mutation R1739E slightly enhanced fast inactivation and attenuated slow inactivation. Characteristics of the double mutant E1295R/R1739E were rather similar to those of the wild-type channel. Mutation N1736R attenuated slow inactivation. Molecular modeling predicted salt bridging of R1739E with the outermost lysine in the activated voltage-sensing helix IIIS4. In contrast, the loss-of-function substitution E1295R repelled R1739, thus destabilizing the activated VSD-III in agreement with our data that E1295R caused a depolarizing shift of the G-V curve. In silico deactivation of VSD-III with constraint-maintained salt bridge E1295-R1739 resulted in the following changes: 1) contacts between IIIS4 and IVS5 were switched; 2) contacts of the linker-helix IIIS4-S5 with IVS5, IVS6, and fast inactivation tripeptide IFM were modified; 3) contacts of the IFM tripeptide with helices IVS5 and IVS6 were altered; 4) mobile loop IVP2-S6 shifted helix IVP2 that contributes to the slow inactivation gate and helix IVS6 that contributes to the fast inactivation gate. The likelihood of salt bridge E1295-R1739 in deactivated VSD-III is supported by Poisson-Boltzmann calculations and state-dependent energetics of loop IVP2-S6. Taken together, our results suggest that loop IVP2-S6 is involved in motion transmission from VSD-III to the inactivation gates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cannabidiol (CBD), one of the cannabinoids from the cannabis plant, can relieve the myotonia resulting from sodium channelopathy, which manifests as repetitive discharges of muscle membrane. We investigated the binding kinetics of CBD to Nav1.4 channels on the muscle membrane. The binding affinity of CBD to the channel was evaluated using whole-cell recording. The CDOCKER program was employed to model CBD docking onto the Nav1.4 channel to determine its binding sites. Our results revealed no differential inhibition of sodium current by CBD when the channels were in activation or fast inactivation status. However, differential inhibition was observed with a dose-dependent manner after a prolonged period of depolarization, leaving the channel in a slow-inactivated state. Moreover, CBD binds selectively to the slow-inactivated state with a significantly faster binding kinetics (>64,000 M-1 s-1) and a higher affinity (Kd of fast inactivation vs. slow-inactivation: >117.42 μM vs. 51.48 μM), compared to the fast inactivation state. Five proposed CBD binding sites in a bundle crossing region of the Nav1.4 channels pore was identified as Val793, Leu794, Phe797, and Cys759 in domain I/S6, and Ile1279 in domain II/S6. Our findings imply that CBD favorably binds to the Nav1.4 channel in its slow-inactivated state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-β4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nav1.5 is the primary voltage-gated Na+ (Nav) channel in the heart. Mutations of Nav1.5 are associated with various cardiac disorders exemplified by the type 3 long QT syndrome (LQT3) and Brugada syndrome (BrS). E1784K is a common mutation that has been found in both LQT3 and BrS patients. Here we present the cryo-EM structure of the human Nav1.5-E1784K variant at an overall resolution of 3.3 Å. The structure is nearly identical to that of the wild-type human Nav1.5 bound to quinidine. Structural mapping of 91- and 178-point mutations that are respectively associated with LQT3 and BrS reveals a unique distribution pattern for LQT3 mutations. Whereas the BrS mutations spread evenly on the structure, LQT3 mutations are clustered mainly to the segments in repeats III and IV that are involved in gating, voltage-sensing, and particularly inactivation. A mutational hotspot involving the fast inactivation segments is identified and can be mechanistically interpreted by our \"door wedge\" model for fast inactivation. The structural analysis presented here, with a focus on the impact of mutations on inactivation and late sodium current, establishes a structure-function relationship for the mechanistic understanding of Nav1.5 channelopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Animal venoms are considered as a promising source of new drugs. Sea anemones release polypeptides that affect electrical activity of neurons of their prey. Voltage dependent sodium (Nav) channels are the common targets of Av1, Av2, and Av3 toxins from Anemonia viridis and CgNa from Condylactis gigantea. The toxins bind to the extracellular side of a channel and slow its fast inactivation, but molecular details of the binding modes are not known. Electrophysiological measurements on Periplaneta americana neuronal preparation revealed differences in potency of these toxins to increase nerve activity. Av1 and CgNa exhibit the strongest effects, while Av2 the weakest effect. Extensive molecular docking using a modern SMINA computer method revealed only partial overlap among the sets of toxins\' and channel\'s amino acid residues responsible for the selectivity and binding modes. Docking positions support earlier supposition that the higher neuronal activity observed in electrophysiology should be attributed to hampering the fast inactivation gate by interactions of an anemone toxin with the voltage driven S4 helix from domain IV of cockroach Nav channel (NavPaS). Our modelling provides new data linking activity of toxins with their mode of binding in site 3 of NavPaS channel.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A family of current-time curves of T-type Cav3.1 Ca2+ channels available in the literature is simulated by a kinetic model differing from that used for the interpretation of all salient features of Na+ and Shaker K+ channels by the insertion of a multiplying factor expressing the difference between the working potential ϕ and the reversal potential ϕr. This deterministic model is also used to simulate experimental curves taken from the literature for steady-state \'fast inactivation\' and for a gradual passage from fast to \'slow inactivation\'. A depolarizing pulse induces fast or slow inactivation depending on whether it lasts 100-500 ms or about 1 min, and is believed to cause a collapse of the central pore near the selectivity filter (SF). A number of features of fast and slow inactivation of Cav3.1 Ca2+ channels are qualitatively interpreted on the basis of a sequence of conformational states. Briefly, the conformation responsible for \'fast inactivation\' is assumed to have the activation gate open and the inactivation gate (i.e., the SF) inactive. Immediately after a depolarizing pulse, this conformation is inactive and requires a sufficiently long rest time at a far negative holding potential to recover from inactivation. \'Slow inactivation\' is ascribed to a different conformation with the activation gate closed and the SF inactive.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    电压门控钠通道基因(SCN4A)的突变,编码Nav1.4,引起非营养不良性肌强直,偶尔与严重的呼吸暂停和喉痉挛有关。由于Nav1.4的C末端尾部(CTerm)突变,有非营养不良性肌强直的病例报告,但功能分析很少。
    我们提出了两个非营养不良性肌强直家族,它们有一个新的杂合突变(E1702del)和一个已知的杂合突变(E1702K)。
    E1702K的先证者表现出反复的横纹肌溶解,女儿出现了喉痉挛和紫癜。对两种突变以及另一种已知的杂合突变(T1700_E1703del)进行功能分析,全部位于CTerm的EF手形图案上,进行异源表达通道的全细胞记录。所有突变均显示受损的快速失活。
    Nav1.4的CTerm对于调节快速失活至关重要。该研究强调了积累Nav1.4的病理突变及其功能分析数据的重要性。
    Mutations of the voltage-gated sodium channel gene (SCN4A), which encodes Nav1.4, cause nondystrophic myotonia that occasionally is associated with severe apnea and laryngospasm. There are case reports of nondystrophic myotonia due to mutations in the C-terminal tail (CTerm) of Nav1.4, but the functional analysis is scarce.
    We present two families with nondystrophic myotonia harboring a novel heterozygous mutation (E1702del) and a known heterozygous mutation (E1702K).
    The proband with E1702K exhibited repeated rhabdomyolysis, and the daughter showed laryngospasm and cyanosis. Functional analysis of the two mutations as well as another known heterozygous mutation (T1700_E1703del), all located on EF hand-like motif in CTerm, was conducted with whole-cell recording of heterologously expressed channel. All mutations displayed impaired fast inactivation.
    The CTerm of Nav1.4 is vital for regulating fast inactivation. The study highlights the importance of accumulating pathological mutations of Nav1.4 and their functional analysis data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVβ subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The segment 4 (S4) voltage sensor in voltage-gated sodium channels (Navs) have domain-specific functions, and the S4 segment in domain DIV (DIVS4) plays a key role in the activation and fast inactivation processes through the coupling of arginine residues in DIVS4 with residues of putative gating charge transfer center (pGCTC) in DIVS1-3. In addition, the first four arginine residues (R1-R4) in Nav DIVS4 have position-specific functions in the fast inactivation process, and mutations in these residues are associated with diverse phenotypes of Nav-related diseases (sodium channelopathies). R1 and R2 mutations commonly display a delayed fast inactivation, causing a gain-of-function, whereas R3 and R4 mutations commonly display a delayed recovery from inactivation and profound use-dependent current attenuation, causing a severe loss-of-function. In contrast, mutations of residues of pGCTC in Nav DIVS1-3 can also alter fast inactivation. Such alterations in fast inactivation may be caused by disrupted interactions of DIVS4 with DIVS1-3. Despite fast inactivation of Navs occurs from both the open-state (open-state inactivation; OSI) and closed state (closed-state inactivation; CSI), changes in CSI have received considerably less attention than those in OSI in the pathophysiology of sodium channelopathies. CSI can be altered by mutations of arginine residues in DIVS4 and residues of pGCTC in Navs, and altered CSI can be an underlying primary biophysical defect of sodium channelopathies. Therefore, CSI should receive focus in order to clarify the pathophysiology of sodium channelopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号