endocytosis

胞吞作用
  • 文章类型: Journal Article
    RNA干扰(RNAi)是由双链RNA(dsRNA)的胞浆进入触发的基因沉默机制。许多动物细胞通过内吞作用将细胞外dsRNA内化用于RNAi诱导。然而,尚不清楚内吞的dsRNA是如何通过内膜/溶酶体膜转位到细胞溶胶中的。在这里,我们发现在果蝇S2细胞中,胞吞的dsRNA诱导溶酶体膜透化(LMP),其允许胞质dsRNA易位。由dsRNA介导的LMP需要溶酶体Cl-/H+反转运蛋白ClC-b/DmOstm1。在clc-b或dmostm1敲除S2细胞中,胞外dsRNA被内吞并正常到达溶酶体,但不能进入胞质溶胶。LMP的药理学诱导在clc-b或dmostm1敲除细胞中恢复细胞外dsRNA指导的RNAi。此外,clc-b或dmostm1突变果蝇在细胞外dsRNA定向RNAi及其相关的抗病毒免疫中存在缺陷。因此,内吞dsRNA具有诱导ClC-b/DmOstm1依赖性LMP的内在能力,其允许胞质dsRNA易位用于果蝇细胞中的RNAi应答。
    RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    安全性和有效性是纳米医学发展纳米疗法的基石目标。了解纳米粒子和免疫细胞之间的生物相互作用至关重要。本研究的重点是通过微流控技术制造N-三甲基壳聚糖/蛋白质纳米载体及其与J774细胞的相互作用,以阐明参与吸收的细胞过程及其对免疫系统的影响,主要通过胞吞作用,溶酶体的激活和胞内降解。制造的纳米颗粒的TEM显示出球形形态,平均直径范围为36±16nm至179±92nm,取决于货物蛋白的浓度(0、12、55μg/mL)。FTIR显示N-三甲基壳聚糖与三磷酸钠之间的交联和BSA的α-螺旋结合损失。TGA显示与粉末相比,N-三甲基壳聚糖/蛋白质纳米颗粒的热稳定性增加。使用XPS证明了所使用的货物蛋白的包封。证明了它们改善细胞渗透性和在未来疫苗制剂中用作纳米载体的潜力。研讨了纳米粒子对HaCaT和J774细胞的毒性,以及评估J774细胞分化状态的重要性。因此,讨论了可能的内吞途径及其对免疫反应的影响。这使我们得出结论,N-三甲基壳聚糖纳米颗粒显示出作为免疫系统载体的潜力。尽管如此,需要更多的研究来了解它们的有效性和在治疗中的可能用途.
    Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 μg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体对细胞ATP的产生至关重要。它们是高度动态的细胞器,其形态和功能通过线粒体融合和裂变控制。线粒体在足细胞中的特定作用,肾小球高度特化的细胞,仍然不太了解。鉴于重要的结构,功能,哺乳动物足细胞和果蝇肾细胞之间的分子相似性,我们利用蝇肾细胞探讨线粒体在细胞功能中的作用。我们的研究表明,Pink1-Park(哺乳动物PINK1-PRKN)途径的改变可以破坏果蝇肾细胞的线粒体动力学。这种破坏导致线粒体破碎或扩大,两者都损害了线粒体功能。线粒体功能障碍随后引发了细胞内吞缺陷,蛋白质聚集,和细胞损伤。这些发现强调了线粒体在肾细胞功能中的关键作用。
    Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    五味子,一种以止咳和镇静作用而闻名的传统中药,在预防各种病毒感染方面显示出了希望。牛疱疹病毒-1(BoHV-1)是一种包膜DNA病毒,可引起牛的呼吸道疾病,导致行业的重大经济损失。由于以前缺乏五味子抗BoHV-1感染的报道,本研究旨在探讨其中的具体机制.结果来自TCID50,qPCR,IFA,和蛋白质印迹分析表明,五味子可以抑制BoHV-1进入MDBK细胞,主要通过其提取物甲米菌素O(甲基O)。具体机制涉及MethO通过抑制PI3K-Akt信号通路的激活,通过笼状蛋白和小窝蛋白介导的内吞作用阻断BoHV-1进入细胞。此外,来自TCID50、qPCR、免疫共沉淀和蛋白质印迹分析显示,五味子通过增强病毒进入后gD的m6A甲基化来阻断BoHV-1gD转录,从而阻碍gD蛋白表达并阻止子代病毒进入细胞并最终抑制BoHV-1复制。总的来说,这些结果表明,五味子可以通过靶向PI3K-Akt信号通路和抑制gD转录来抵抗BoHV-1感染。
    Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真核细胞通过内吞作用掺入不同的分子,这对细胞的存活和繁殖能力至关重要。尽管已经在哺乳动物和酵母细胞中对该过程进行了更详细的研究,几个与致病原生生物合作的小组做出了相关贡献。这篇综述分析了有关厌氧原生生物内吞过程的最相关数据(溶组织内阿米巴,肠贾第虫,阴道毛滴虫,和Tritrichomonas胎儿)。许多原生动物可以在其整个表面发挥内吞活性,并且强度很大,就像溶组织大肠杆菌一样。关于内吞途径和PI-3激酶参与的现有数据,Rab,从历史的角度对Rho分子复合物进行了综述。
    The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell\'s survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    急性呼吸道感染导致全世界的发病率和死亡率。这种致命疾病的常见原因是病毒,最常见的是流感病毒。流感病毒有几种感染能力,包括利用宿主的机器在细胞内生存和安全复制。这篇综述旨在研究有关流感病毒如何使用宿主机制的文献,包括内吞和自噬,它们在细胞内的内化和复制。这种审查方法涉及通过检查PubMed和Scopus数据库中发表的文章进行文献检索。使用的关键词是\"内吞\"或\"自噬\"和\"流感病毒\"。由于纳入和排除标准,纳入了18篇文章。GTPases开关,V-ATPase在流感病毒侵入宿主细胞的内吞机制中起关键作用。另一方面,LC3和Atg5通过自噬途径促进流感诱导的细胞凋亡。总之,流感病毒主要使用网格蛋白介导的内吞作用进入细胞,并通过退出内体转移到细胞核进行复制来避免在内体成熟过程中的降解。它还利用自噬诱导细胞凋亡以继续复制。流感病毒劫持内吞作用和自噬机制的能力可能是进一步研究的关键点。因此,我们讨论了流感病毒如何同时利用内吞和自噬,以及针对这些机制的新策略疗法的方法。
    Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host\'s machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were \"Endocytosis\" OR \"Autophagy\" AND \"Influenza Virus\". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内体-溶酶体系统代表了各种细胞外物质的关键降解途径,它的功能障碍与心血管和神经退行性疾病有关。这种降解过程涉及多个步骤:(1)细胞外分子的摄取,(2)将货物运输到溶酶体,和(3)溶酶体酶的消化。虽然据报道细胞摄取和溶酶体功能受mTORC1-TFEB轴调节,货物运输的关键监管信号仍不清楚。值得注意的是,我们之前的研究发现异鼠李素,一种膳食类黄酮,独立于mTORC1-TFEB轴增强J774.1细胞系中的内体-溶酶体蛋白水解。这一发现表明另一个信号参与了异鼠李素的机制。这项研究使用转录组分析分析了异鼠李素的分子机制,并揭示了转录因子GATA3在增强的内体-溶酶体降解中起关键作用。我们的数据还表明,mTORC2调节GATA3核易位,mTORC2-GATA3轴改变内体形成和成熟,促进货物向溶酶体的有效运输。这项研究表明,mTORC2-GATA3轴可能是异常物质降解的新目标。
    The endosomal-lysosomal system represents a crucial degradation pathway for various extracellular substances, and its dysfunction is linked to cardiovascular and neurodegenerative diseases. This degradation process involves multiple steps: (1) the uptake of extracellular molecules, (2) transport of cargos to lysosomes, and (3) digestion by lysosomal enzymes. While cellular uptake and lysosomal function are reportedly regulated by the mTORC1-TFEB axis, the key regulatory signal for cargo transport remains unclear. Notably, our previous study discovered that isorhamnetin, a dietary flavonoid, enhances endosomal-lysosomal proteolysis in the J774.1 cell line independently of the mTORC1-TFEB axis. This finding suggests the involvement of another signal in the mechanism of isorhamnetin. This study analyzes the molecular mechanism of isorhamnetin using transcriptome analysis and reveals that the transcription factor GATA3 plays a critical role in enhanced endosomal-lysosomal degradation. Our data also demonstrate that mTORC2 regulates GATA3 nuclear translocation, and the mTORC2-GATA3 axis alters endosomal formation and maturation, facilitating the efficient transport of cargos to lysosomes. This study suggests that the mTORC2-GATA3 axis might be a novel target for the degradation of abnormal substances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究的重点是开发负载蜂毒(BV)并用PEG(BV-Lipo-PEG)包被的脂质体的最佳配方。使用动态光散射对脂质体进行表征,透射电子显微镜,和傅里叶变换红外光谱。在脂质体制剂中,F3表现出最窄的尺寸分布,具有193.72±7.35的低PDI值,表明最小的团聚相关问题和更均匀的尺寸分布。BV-Lipo-PEG在4°C下储存3个月后表现出显著的稳定性。此外,发现药物从脂质体制剂中的释放是pH依赖性的。此外,BV-Lipo-PEG表现出良好的包封效率,值达到96.74±1.49。脂质体纳米载体的抗癌潜力通过MTT试验进行评价,流式细胞术,细胞周期分析,和实时实验。脂质体系统的功能化增强了内吞作用。与游离药物和单独的BV-Lipo相比,BV-Lipo-PEG的IC50值显着降低,表明BV-Lipo-PEG在A549细胞系中更有效地诱导细胞死亡。与其他样品相比,BV-Lipo-PEG在A549细胞系中表现出更高的凋亡率。在用BV-Lipo-PEG处理的A549细胞系中,MMP-2、MMP-9和CyclinE基因表达水平降低,而Caspase3和Caspase9的表达水平增加。这些发现表明,通过聚乙二醇化脂质体递送BV对于肺癌的治疗具有重要的前景。
    This study focused on developing an optimal formulation of liposomes loaded with bee venom (BV) and coated with PEG (BV-Lipo-PEG). The liposomes were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy. Among the liposomal formulations, F3 exhibited the narrowest size distribution with a low PDI value of 193.72 ± 7.35, indicating minimal agglomeration-related issues and a more uniform size distribution. BV-Lipo-PEG demonstrated remarkable stability over 3 months when stored at 4 °C. Furthermore, the release of the drug from the liposomal formulations was found to be pH-dependent. Moreover, BV-Lipo-PEG exhibited favorable entrapment efficiencies, with values reaching 96.74 ± 1.49. The anticancer potential of the liposomal nanocarriers was evaluated through MTT assay, flow cytometry, cell cycle analysis, and real-time experiments. The functionalization of the liposomal system enhanced endocytosis. The IC50 value of BV-Lipo-PEG showed a notable decrease compared to both the free drug and BV-Lipo alone, signifying that BV-Lipo-PEG is more effective in inducing cell death in A549 cell lines. BV-Lipo-PEG exhibited a higher apoptotic rate in A549 cell lines compared to other samples. In A549 cell lines treated with BV-Lipo-PEG, the expression levels of MMP-2, MMP-9, and Cyclin E genes decreased, whereas the expression levels of Caspase3 and Caspase9 increased. These findings suggest that delivering BV via PEGylated liposomes holds significant promise for the treatment of lung cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    信号转导和稳态受到细胞内环境中复杂蛋白质相互作用的调节。因此,不可渗透的大分子(核酸,蛋白质,和药物)控制蛋白质相互作用对于调节细胞功能和治疗应用至关重要。然而,大分子通过细胞膜的运输是不容易的,因为细胞膜分离内/细胞外环境,分子运输的类型受膜蛋白调节。细胞穿透肽(CPPs)有望成为分子转运的载体。CPPs可以通过胞吞和直接转位将大分子转运到细胞中。由于几种可能性,运输机制在很大程度上仍然不清楚。在这次审查中,我们描述了研究CPP构象的方法,易位,和使用人造膜的货物运输。我们还研究了通过CPPs跨活细胞膜的生物分子转运。随后,我们不仅展示了CPPs的生化应用,还展示了CPPs的合成生物应用。最后,从药物递送的角度描述了生物分子和纳米颗粒通过CPPs转运到特定组织中的最新进展。这篇综述为讨论通过这两个平台的生物分子运输机制提供了机会。
    Signal transduction and homeostasis are regulated by complex protein interactions in the intracellular environment. Therefore, the transportation of impermeable macromolecules (nucleic acids, proteins, and drugs) that control protein interactions is essential for modulating cell functions and therapeutic applications. However, macromolecule transportation across the cell membrane is not easy because the cell membrane separates the intra/extracellular environments, and the types of molecular transportation are regulated by membrane proteins. Cell-penetrating peptides (CPPs) are expected to be carriers for molecular transport. CPPs can transport macromolecules into cells through endocytosis and direct translocation. The transport mechanism remains largely unclear owing to several possibilities. In this review, we describe the methods for investigating CPP conformation, translocation, and cargo transportation using artificial membranes. We also investigated biomolecular transport across living cell membranes via CPPs. Subsequently, we show not only the biochemical applications but also the synthetic biological applications of CPPs. Finally, recent progress in biomolecule and nanoparticle transportation via CPPs into specific tissues is described from the viewpoint of drug delivery. This review provides the opportunity to discuss the mechanism of biomolecule transportation through these two platforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于细胞膜处的动态硫醇交换化学的小分子二硫化物单元技术平台具有用于药物递送的潜力。然而,由不同取代基引起的二硫化物单元CSSC二面角的改变直接影响该技术平台的有效性及其自身的化学稳定性。高度稳定的开环松弛型二硫化物单元由于其低二面角而在药物递送中发挥有限的作用。这里,我们通过三角捆绑,在3,4,5-三羟基苯基骨架的基础上建造了一种新型的二硫化物单元飞船。胞内递送结果显示,二硫化物单位星舰三角捆绑有效促进细胞摄取,无任何毒性,这是远远超过100倍,特别是一个单一的二硫化物单元的设备的活性。然后,使用硫醇橡皮擦的细胞摄取能力显着降低(73-93%),证明了二硫化物飞船的三角捆绑是通过细胞表面硫醇介导的动态共价二硫化物交换而不依赖于内吞作用的内化机制。此外,分子动力学模拟的分析表明,二硫化物飞船的三角捆绑可以显着改变膜曲率,同时在多个方向上推动脂质分子,导致膜结构的显著扭曲和优异的膜渗透性能。总之,我们建造的星舰系统完全弥补了二面角差导致的低效率缺陷。
    A small molecule disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the CSSC dihedral angle of the disulfide unit caused by diverse substituents directly affects the effectiveness of this technology platform as well as its own chemical stability. The highly stable open-loop relaxed type disulfide unit plays a limited role in drug delivery due to its low dihedral angle. Here, we have built a novel disulfide unit starship based on the 3,4,5-trihydroxyphenyl skeleton through trigonometric bundling. The intracellular delivery results showed that the trigonometric bundling of the disulfide unit starship effectively promoted cellular uptake without any toxicity, which is far more than 100 times more active than that of equipment with a single disulfide unit in particular. Then, the significant reduction in cell uptake capacity (73-93%) using thiol erasers proves that the trigonometric bundling of the disulfide starship is an endocytosis-independent internalization mechanism via a dynamic covalent disulfide exchange mediated by thiols on the cell surface. Furthermore, analysis of the molecular dynamics simulations demonstrated that trigonometric bundling of the disulfide starship can significantly change the membrane curvature while pushing lipid molecules in multiple directions, resulting in a significant distortion in the membrane structure and excellent membrane permeation performance. In conclusion, the starship system we built fully compensates for the inefficiency deficiencies induced by poor dihedral angles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号