electron transfers

电子转移
  • 文章类型: Journal Article
    裂解多糖单加氧酶(LPMO)的发现,在多糖降解中起主要作用的铜依赖性酶家族,揭示了氧化还原酶在生物质生物利用中的重要性。在真菌中,一系列氧化还原蛋白已被认为与LPMO一起工作以引起多糖氧化。在细菌中,对氧化还原蛋白和LPMO之间的相互作用知之甚少,或两者之间的相互作用如何促进多糖降解。因此,我们着手表征来自舰虫共生体Turedinibacterturnerae的两种先前未研究的蛋白质,这些蛋白质最初是通过将碳水化合物结合域附加到具有可能的氧化还原功能的未表征域上来鉴定的。这里,来自这些蛋白质的几个结构域的X射线晶体结构与表征其功能的初步努力一起呈现。分析表明,靶蛋白不太可能充当LPMO电子供体,提出了新的问题,潜在的氧化还原功能,这些大的细胞外多含血红素的c型细胞色素可能在这些细菌中执行。
    The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    混合量子力学/分子力学(QM/MM)方法已成为研究生物分子不可或缺的工具。在这篇文章中,我们简要回顾了QM/MM方法的基本方法细节,并讨论了它们在生物分子机器中各种能量转导问题中的应用。比如远程质子运输,快速电子转移,和机械化学耦合。我们强调了平衡计算效率和准确性的这些应用的特别重要性。使用最近的几个例子,我们说明了基态和激发态的QM/MM方法的价值和局限性,以及在特定应用中校准它们的策略。最后,我们简要评论了几个领域,这些领域可以从进一步的努力中受益,以使QM/MM分析更加定量并适用于日益复杂的生物学问题。生物物理学年度评论的预期最终在线出版日期,第52卷是2023年5月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号