cilia length

  • 文章类型: Journal Article
    未经证实:本研究旨在调查纤毛长度受损和异常纤毛超微结构标记物,动力蛋白轴突中间链1(DNAI1),是变应性鼻炎(AR)患者鼻粘膜的重要病理特点。
    未经证实:活检取自对照组(n=20)和AR患者(n=20)的下鼻甲(IT)。通过使用免疫荧光染色评估纤毛长度和DNAI1位置模式。使用半定量评分系统定义了DNAI1定位的三种模式:正常(N),部分(P)和缺失(A)。在每个高倍视野(每个样本5个视野)中,每个单独的切片被分配0和2之间的分数。评分0=模式N>70%;1=模式N+P>70%;2=模式A≥30%。使用受试者工作特征(ROC)曲线评估DNAI1评分对AR的预测值。
    UNASSIGNED:与对照组相比,AR患者的纤毛长度减少了33.3%(P<0.0001)。AR组DNAI1评分越高,中位数(第一和第三四分位数)为0.9(0.4和1.08),对照组为0.1(0和0.76)(P=0.0071)。基于0.74的曲线下面积计算DNAI1的ROC(P=0.0094)。ROC的截断值为0.5833,灵敏度和特异度为70%。
    UNASSIGNED:这些结果表明纤毛长度较短和DNAI1的异常定位是变应性鼻粘膜的潜在重要病理特征。DNAI1的异常定位可能为AR的临床管理提供新的候选靶标。
    UNASSIGNED: This study aimed to investigate whether the impaired ciliary length and aberrant ciliary ultrastructure marker, dynein axonemal intermediate chain 1 (DNAI1), are important pathological characteristics in nasal mucosa from patients with allergic rhinitis (AR).
    UNASSIGNED: Biopsies were taken from the inferior turbinate (IT) of controls (n = 20) and patients with AR (n = 20). The ciliary length and the DNAI1 location patterns were assessed by using immunofluorescent staining. Three patterns of DNAI1 localization were defined using a semi-quantitative scoring system: normal (N), partial (P) and absence (A). Every individual section was assigned a score between 0 and 2 in each high-power field (5 fields per sample). The score of 0 = pattern N >70%; 1 = patterns N + P >70%; and 2 = pattern A ≥30%. The receiver operating characteristic (ROC) curve was used to evaluate the predicted value of DNAI1 score for AR.
    UNASSIGNED: The ciliary length was reduced by 33.3% in patients with AR compared with controls (P < 0.0001). The higher DNAI1 score was found in the AR group, with a median (first and third quartile) of 0.9 (0.4 and 1.08), which was 0.1 (0 and 0.76) in the control group (P = 0.0071). The ROC of DNAI1 was calculated based on the area under the curve of 0.74 (P = 0.0094). The cutoff value of ROC was 0.5833, with a sensitivity and specificity of 70%.
    UNASSIGNED: These results suggested that the shorter ciliary length and aberrant localization of DNAI1 are potentially important pathological characteristics of the allergic nasal mucosa. The aberrant localization of DNAI1 may provide a novel candidate target for clinical management of AR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The left-right (LR) field recognizes the importance of the mechanism involving the calcium permeable channel Polycystin-2. However, whether the early LR symmetry breaking mechanism is exclusively via Polycystin-2 has not been tested. For that purpose, we need to be able to isolate the effects of decreasing the levels of Pkd2 protein from any eventual effects on flow dynamics. Here we demonstrate that curly-up (cup) homozygous mutants have abnormal flow dynamics. In addition, we performed one cell stage Pkd2 knockdowns and LR organizer specific Pkd2 knockdowns and observed that both techniques resulted in shorter cilia length and abnormal flow dynamics. We conclude that Pkd2 reduction leads to LR defects that cannot be assigned exclusively to its putative role in mediating mechanosensation because indirectly, by modifying cell shape or decreasing cilia length, Pkd2 deficit affects LR flow dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Primary cilia are microtubule-based organelles that are involved in sensing micro-environmental cues and regulating cellular homeostasis via triggering signaling cascades. Hypoxia is one of the most common environmental stresses that organ and tissue cells may often encounter during embryogenesis, cell differentiation, infection, inflammation, injury, cerebral and cardiac ischemia, or tumorigenesis. Although hypoxia has been reported to promote or inhibit primary ciliogenesis in different tissues or cultured cell lines, the role of hypoxia in ciliogenesis is controversial and still unclear. Here we investigated the primary cilia change under cobalt chloride (CoCl2)-simulated hypoxia in immortalized human retina pigment epithelial-1 (hTERT RPE-1) cells. We found CoCl2 treatment elongated primary cilia in a time- and dose-dependent manner. The prolonged cilia recovered back to near normal length when CoCl2 was washed out from the cell culture medium. Under CoCl2-simulated hypoxia, the protein expression levels of HIF-1/2α and acetylated-α-tubulin (cilia marker) were increased, while the protein expression level of Rabaptin-5 is decreased during hypoxia. Taken together, our results suggest that hypoxia may elongate primary cilia by downregulating Rabaptin-5 involved endocytosis. The coordination between endocytosis and ciliogenesis may be utilized by cells to adapt to hypoxia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: Primary ciliary dyskinesia (PCD) is characterised by an imbalance in mucociliary clearance leading to chronic respiratory infections. Cilia length is considered to be a contributing factor in cilia movement. Recently, IFT46 protein has been related to cilia length. Therefore, this work aims to study IFT46 expression in a PCD patients cohort and analyse its relationship with cilia length and function, as it was not previously described.
    UNASSIGNED: The expression of one intraflagellar transport (IFT46) and two regulating ciliary architecture (FOXJ1 and DNAI2) genes, as well as cilia length of 27 PCD patients, were measured. PCD patients were diagnosed based on clinical data, and cilia function and ultrastructure. Gene expression was estimated by real-time RT-PCR and cilia length by electron microscopy in nasal epithelium biopsies.Results and conclusions: While IFT46 expression was only diminished in patients with short cilia, FOXJ1, and DNAI2 expression were reduced in all PCD patient groups compared to controls levels. Among the PCD patients, cilia were short in 44% (5.9 ± 0.70 µm); nine of these (33% from the total) patients\' cilia also had an abnormal ultrastructure. Cilia length was normal in 33% of patients (6.4 ± 0.39 µm), and only three patients\' biopsies indicated decreased expression of dynein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The primary cilium is a solitary organelle that organizes a sensitive signaling hub in a highly ordered microenvironment. Cilia are plastic structures, changing their length in response to bioactive substances, and ciliary length may be regulated to ensure efficient signaling capacity. Mammalian brain neurons possess primary cilia that are enriched in a set of G protein-coupled receptors (GPCRs), including the feeding-related melanin-concentrating hormone (MCH) receptor 1 (MCHR1). We previously demonstrated a novel biological phenomenon, ciliary MCHR1-mediated cilia length shortening through Gi/o and Akt signaling, using a simple cell culture model of human retinal pigmented epithelial RPE1 cells exogenously expressing MCHR1. In the present study, we characterized the properties of endogenous MCHR1-expressing primary cilia in hippocampal neurons in rodents. Using cultured dissociated rat hippocampal neurons in vitro, we showed that MCH triggered cilia length reduction involved in MCHR1-Gi/o and -Akt signaling. In rat hippocampal slice cultures with preservation of the cytoarchitecture and cell populations, ciliary MCHR1 was abundantly located in the CA1 and CA3 regions, but not in the dentate gyrus. Notably, treatment of slice cultures with MCH induced Gi/o- and Akt-dependent cilia shortening in the CA1 region without influencing cilia length in the CA3 region. Regarding the in vivo mouse brain, we observed higher levels of ciliary MCHR1 in the CA1 and CA3 regions as well as in slice cultures. In the starved state mice, a marked increase in MCH mRNA expression was detected in the lateral hypothalamus. Furthermore, MCHR1-positive cilia length in the hippocampal CA1 region was significantly shortened in fasted mice compared with fed mice. The present findings focused on the hippocampus provide a potential approach to investigate how MCHR1-driven cilia shortening regulates neuronal activity and physiological function toward feeding and memory tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    G-protein-coupled receptors (GPCRs) comprise the largest and most diverse cell surface receptor family, with more than 800 known GPCRs identified in the human genome. Binding of an extracellular cue to a GPCR results in intracellular G protein activation, after which a sequence of events, can be amplified and optimized by selective binding partners and downstream effectors in spatially discrete cellular environments. Because GPCRs are widely expressed in the body, they help to regulate an incredible range of physiological processes from sensation to growth to hormone responses. Indeed, it is estimated that ∼ 30% of all clinically approved drugs act by binding to GPCRs. The primary cilium is a sensory organelle composed of a microtubule axoneme that extends from the basal body. The ciliary membrane is highly enriched in specific signaling components, allowing the primary cilium to efficiently convey signaling cascades in a highly ordered microenvironment. Recent data demonstrated that a limited number of non-olfactory GPCRs, including somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1), are selectively localized to cilia on several mammalian cell types including neuronal cells. Utilizing cilia-specific cell biological and molecular biological approaches, evidence has accumulated to support the biological importance of ciliary GPCR signaling followed by cilia structural changes. Thus, cilia are now considered a unique sensory platform for integration of GPCR signaling toward juxtaposed cytoplasmic structures. Herein, we review ciliary GPCRs and focus on a novel role of MCHR1 in ciliary length control that will impact ciliary signaling capacity and neuronal function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Primary cilia are singular, sensory organelles that extend from the plasma membrane of most quiescent mammalian cells. These slender, microtubule-based organelles receive and transduce extracellular cues and regulate signaling pathways. Primary cilia are critical to the development and function of many tissue types, and mutation of ciliary genes causes multi-system disorders, termed ciliopathies. Notably, renal cystic disease is one of the most common clinical features of ciliopathies, highlighting a central role for primary cilia in the kidney. Additionally, acute kidney injury and chronic kidney disease are associated with altered primary cilia lengths on renal epithelial cells, suggesting ciliary dynamics and renal physiology are linked. Here we describe methods to examine primary cilia in kidney tissue and in cultured renal cells. We include immunofluorescence and scanning electron microscopy to determine ciliary localization of proteins and cilia structure. Further, we detail cellular assays to measure cilia assembly and disassembly, which regulate cilia length.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK\'s kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical properties that underlies clinical manifestations such as obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    斑马鱼左右组织者(LRO)中活动纤毛的长度减少,也被称为Kupffer\的囊泡,对左右发展有很大影响。在这里,我们通过斑马鱼胚胎中的遗传过表达和数学建模证明,在胚胎LRO流体流动中,活动纤毛长度增加的影响比短纤毛的影响更轻。通过Arl13b过表达,增加纤毛长度而不影响纤毛搏动频率,我们发现纤毛长度的增加与搏动幅度的减少有关,导致Arl13b过表达和野生型(WT)胚胎的流动强度相似,这是当前理论无法预测的。较长的纤毛表现出明显的螺旋节拍模式,因此,较低的搏动幅度相对于WT,弹性流体动力学形状转变的结果。对于长螺旋纤毛,流体动力学建模预测温和(大约。12%)相对于WT施加在流体上的扭矩减少,导致流量的成比例减少。实验证实了这种温和的减少,提供了对器官部位的轻度影响的机制。
    Reduction in the length of motile cilia in the zebrafish left-right organizer (LRO), also known as Kupffer\'s vesicle, has a large impact on left-right development. Here we demonstrate through genetic overexpression in zebrafish embryos and mathematical modelling that the impact of increased motile cilia length in embryonic LRO fluid flow is milder than that of short cilia. Through Arl13b overexpression, which increases cilia length without impacting cilia beat frequency, we show that the increase in cilium length is associated with a decrease in beat amplitude, resulting in similar flow strengths for Arl13b overexpression and wild-type (WT) embryos, which were not predicted by current theory. Longer cilia exhibit pronounced helical beat patterns and, consequently, lower beat amplitudes relative to WT, a result of an elastohydrodynamic shape transition. For long helical cilia, fluid dynamics modelling predicts a mild (approx. 12%) reduction in the torque exerted on the fluid relative to the WT, resulting in a proportional reduction in flow generation. This mild reduction is corroborated by experiments, providing a mechanism for the mild impact on organ situs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号