cardiomyocyte

心肌细胞
  • 文章类型: Journal Article
    核和胞质蛋白的翻译后SUMO化维持真核细胞的稳态,并协调对代谢需求或细胞外刺激变化的程序性反应。在兴奋的细胞中,SUMO化调节离子通道的生物物理特性和运输。离子通道SUMO化状态由SUMO连接酶和解连接酶的相反酶活性决定。磷酸化在SUMO化中也起允许作用。已经确定了几种离子通道的SUMO解混合气体,但其相应的E3连接酶仍然未知。这项研究显示PIAS3,又名KChAP,是HEK细胞中Kv4.2和HCN2通道的真正的SUMOE3连接酶,和心肌细胞中的内源性Kv4.2和Kv4.3通道。PIAS3介导的在Kv4.2-K579的SUMO化通过依赖rab11a的再循环机制增加通道表面表达。Kv4.2-S552的PKA磷酸化降低了HEK293细胞中Kv4通道介导的电流,心肌细胞,和神经元。这项研究显示PKA介导的磷酸化阻断了HEK细胞和心肌细胞中的Kv4.2-K579SUMO化。一起,这些数据表明PIAS3是控制离子通道表面表达的信号级联中的关键下游介质.
    Post-translational SUMOylation of nuclear and cytosolic proteins maintains homeostasis in eukaryotic cells and orchestrates programmed responses to changes in metabolic demand or extracellular stimuli. In excitable cells, SUMOylation tunes the biophysical properties and trafficking of ion channels. Ion channel SUMOylation status is determined by the opposing enzyme activities of SUMO ligases and deconjugases. Phosphorylation also plays a permissive role in SUMOylation. SUMO deconjugases have been identified for several ion channels, but their corresponding E3 ligases remain unknown. This study shows PIAS3, a.k.a. KChAP, is a bona fide SUMO E3 ligase for Kv4.2 and HCN2 channels in HEK cells, and endogenous Kv4.2 and Kv4.3 channels in cardiomyocytes. PIAS3-mediated SUMOylation at Kv4.2-K579 increases channel surface expression through a rab11a-dependent recycling mechanism. PKA phosphorylation at Kv4.2-S552 reduces the current mediated by Kv4 channels in HEK293 cells, cardiomyocytes, and neurons. This study shows PKA mediated phosphorylation blocks Kv4.2-K579 SUMOylation in HEK cells and cardiomyocytes. Together, these data identify PIAS3 as a key downstream mediator in signaling cascades that control ion channel surface expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成年哺乳动物心脏具有极其有限的心脏再生能力。大多数心肌细胞生活在永久细胞周期停滞的状态下,无法重新进入周期。在新生儿发育过程中,心肌细胞从细胞增殖转变为成熟状态。尽管几种信号通路参与了这一转变,这些输入协调调节心肌细胞成熟的分子机制尚不完全清楚。维甲酸(RA)在发育中起着举足轻重的作用,形态发生,和再生。尽管RA信号在胚胎心脏发育中的重要性,对其在出生后早期的功能知之甚少。我们发现醛脱氢酶1家族成员A2(Aldh1a2)的mRNA表达,它编码合成全反式维甲酸(ATRA)的关键酶,是RA信号传导的重要调节剂,在新生小鼠心室中短暂上调。单细胞转录组分析和免疫组织化学显示,在出生后早期,Aldh1a2表达在心脏成纤维细胞中富集。施用ATRA抑制培养的新生大鼠心肌细胞和人心肌细胞中的心肌细胞增殖。RNA-seq分析表明,ATRA治疗的产前大鼠心室心肌细胞中细胞增殖相关基因下调,而心肌细胞成熟相关基因上调。这些发现表明,源自心脏成纤维细胞的RA信号是新生儿心脏发育过程中心肌细胞增殖和成熟的关键调节因子之一。
    The adult mammalian heart has extremely limited cardiac regenerative capacity. Most cardiomyocytes live in a state of permanent cell-cycle arrest and are unable to re-enter the cycle. Cardiomyocytes switch from cell proliferation to a maturation state during neonatal development. Although several signaling pathways are involved in this transition, the molecular mechanisms by which these inputs coordinately regulate cardiomyocyte maturation are not fully understood. Retinoic acid (RA) plays a pivotal role in development, morphogenesis, and regeneration. Despite the importance of RA signaling in embryo heart development, little is known about its function in the early postnatal period. We found that mRNA expression of aldehyde dehydrogenase 1 family member A2 (Aldh1a2), which encodes the key enzyme for synthesizing all-trans retinoic acid (ATRA) and is an important regulator for RA signaling, was transiently upregulated in neonatal mouse ventricles. Single-cell transcriptome analysis and immunohistochemistry revealed that Aldh1a2 expression was enriched in cardiac fibroblasts during the early postnatal period. Administration of ATRA inhibited cardiomyocyte proliferation in cultured neonatal rat cardiomyocytes and human cardiomyocytes. RNA-seq analysis indicated that cell proliferation-related genes were downregulated in prenatal rat ventricular cardiomyocytes treated with ATRA, while cardiomyocyte maturation-related genes were upregulated. These findings suggest that RA signaling derived from cardiac fibroblasts is one of the key regulators of cardiomyocyte proliferation and maturation during neonatal heart development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肥厚型心肌病(HCM)是由编码肌节相关蛋白的基因变异引起的心血管病理学。然而,HCM相关基因中多种变异的临床意义尚不清楚.CRISPR/Cas9是一种核苷酸序列编辑工具,可以解开不同的生物学任务。在这项研究中,将CRISPR/Cas9突变引入健康供体的诱导多能干细胞(iPSCs),并将等基因iPSC系定向分化为心肌细胞,以评估未知意义的变异的致病性。MYH7中的p.M659I(c.1977G>A),其先前在HCM患者中发现。使用具有和不具有p.M659I(c.1977G>A)突变的两个单链供体寡核苷酸,与CRISPR/Cas9一起,产生在MYH7中的p.M659I(c.1977G>A)变体处杂合的iPSC系。没有观察到CRISPR/Cas9脱靶活性。在MYH7中具有引入的p.M659I(c.1977G>A)突变的iPSC系保留其多能状态和正常核型。与等基因对照相比,MYH7中引入p.M659I(c.1977G>A)突变的iPSC衍生的心肌细胞概括了已知的HCM特征:增大的大小,舒张钙水平升高,HCM相关基因表达的变化,破坏了能量代谢.这些发现表明该变体的致病性。
    Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触素2样蛋白(SYNPO2L)位于心肌细胞的肌节中,并参与心脏形态发生。然而,SYNPO2L在心脏中的分子功能尚未完全了解。我们研究了SYNPO2L与肌节α-肌动蛋白和肌动蛋白丝在培养的小鼠心肌细胞中的相互作用。免疫荧光研究表明,SYNPO2L在肌节的Z盘上与α-actinin和肌动蛋白丝共定位。重组SYNPO2La或SYNPO2Lb在不存在α-肌动蛋白的情况下引起肌动蛋白丝的成束,并增强了肌动蛋白束的α-肌动蛋白依赖性形成。此外,高速原子力显微镜显示SYNPO2La通过其球状末端直接与α-actinin结合。α-肌动蛋白和SYNPO2La之间的相互作用固定了两种蛋白质在肌动蛋白丝上的运动。这些结果强烈表明,SYNPO2L在肌动蛋白束形成过程中与α-肌动蛋白协同作用,以促进肌节的形成和维持。
    Synaptopodin 2-like protein (SYNPO2L) is localized in the sarcomere of cardiomyocytes and is involved in heart morphogenesis. However, the molecular function of SYNPO2L in the heart is not fully understood. We investigated the interaction of SYNPO2L with sarcomeric α-actinin and actin filaments in cultured mouse cardiomyocytes. Immunofluorescence studies showed that SYNPO2L colocalized with α-actinin and actin filaments at the Z-discs of the sarcomere. Recombinant SYNPO2La or SYNPO2Lb caused a bundling of the actin filaments in the absence of α-actinin and enhanced the α-actinin-dependent formation of actin bundles. In addition, high-speed atomic force microscopy revealed that SYNPO2La directly bound to α-actinin via its globular ends. The interaction between α-actinin and SYNPO2La fixed the movements of the two proteins on the actin filaments. These results strongly suggest that SYNPO2L cooperates with α-actinin during actin bundle formation to facilitate sarcomere formation and maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从出生到成年,哺乳动物的心脏主要通过增加心肌细胞(CM)的大小来生长,这被称为成熟的肥大生长。Hippo-YAP信号通路是众所周知的调节心脏发育和再生,但其在CM成熟肥大中的作用尚未明确解决。遗留物样4(VGLL4)是Hippo-YAP途径的关键组成部分,它可以作为YAP/TAZ的抑制器,该信号通路的末端转录效应子。为了建立研究CM成熟肥大的体外模型,我们比较了T3(三碘甲状腺原氨酸)的生物学效应,Dex(地塞米松),和T3/Dex在培养的新生大鼠心室肌细胞(NRVM)中。T3/Dex组合治疗比T3或Dex单一治疗刺激更大的成熟肥大。使用T3/Dex处理NRVM作为体外模型,我们发现激活VGLL4抑制CM成熟肥大。在出生后的心脏,激活VGLL4抑制心脏生长,心脏功能受损,和减少CM的大小。在分子水平上,VGLL4的激活抑制PI3K-AKT通路,破坏VGLL4和TEAD的相互作用消除了这种抑制作用。总之,我们的数据表明,VGLL4通过抑制YAP/TAZ-TEAD复合物及其下游PI3K-AKT通路的激活,从而抑制CM成熟肥大.
    From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心脏病,尤其是心血管疾病,他们的高发病率和高死亡率给社会带来了沉重的负担。在临床上,心脏移植被认为是挽救患者生命的有效策略,虽然它可能遭受缺乏供体和可能的免疫反应。鉴于此,已经做出了巨大的努力来开发替代策略以恢复功能并促进心脏组织的再生。作为融合细胞生物学和材料科学的新兴领域,组织工程技术允许构建仿生生物复合物作为心脏修复的器官替代品。在这次审查中,我们将介绍心脏组织工程和人造心脏的最新进展。在介绍了心脏组织工程的关键要素之后,我们将介绍先进的制造方法,以实现具有所需的微/纳米结构设计的支架以及这些生物启发支架的应用。我们还将从生物医学角度讨论当前的困境和可能的发展方向。
    Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄芩苷是从黄芩干燥根中获得的黄酮苷,属于唇形科。越来越多的证据表明黄芩苷对心血管疾病具有良好的治疗作用。以前的研究已经揭示了黄芩苷对动脉粥样硬化的治疗作用,心肌缺血/再灌注损伤,高血压,和通过抗炎引起的心力衰竭,抗氧化剂,和脂质代谢机制。近年来,一些与黄芩苷有关的新观点,已经提出了凝血和纤溶系统,在理解黄芩苷保护心肌细胞的机制方面取得了新的进展。然而,许多相关的潜在机制仍然无法解释,缺乏大量的实验数据。因此,需要进一步的研究来确定这些机制。在这次审查中,我们总结了黄芩苷的作用机制,其中包括抗炎和抗氧化作用;抑制内皮细胞凋亡;调节先天免疫;抑制血管平滑肌细胞增殖,迁移,和收缩;调节凝血和纤溶系统;抑制心肌肥大;预防心肌纤维化;以及对心肌细胞的抗凋亡作用。
    Baicalin is a flavonoid glycoside obtained from the dried root of Scutellaria baicalensis Georgi, which belongs to the Labiatae family. Accumulating evidence indicates that baicalin has favorable therapeutic effects on cardiovascular diseases. Previous studies have revealed the therapeutic effects of baicalin on atherosclerosis, myocardial ischemia/reperfusion injury, hypertension, and heart failure through anti-inflammatory, antioxidant, and lipid metabolism mechanisms. In recent years, some new ideas related to baicalin in ferroptosis, coagulation and fibrinolytic systems have been proposed, and new progress has been made in understanding the mechanism by which baicalin protects cardiomyocytes. However, many relevant underlying mechanisms remain unexplained, and much experimental data is lacking. Therefore, further research is needed to determine these mechanisms. In this review, we summarize the mechanisms of baicalin, which include its anti-inflammatory and antioxidant effects; inhibition of endothelial cell apoptosis; modulation of innate immunity; suppression of vascular smooth muscle cells proliferation, migration, and contraction; regulation of coagulation and fibrinolytic systems; inhibition of myocardial hypertrophy; prevention of myocardial fibrosis; and anti-apoptotic effects on cardiomyocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    激活氧化代谢的Ca2敏感酶,同时防止导致线粒体和细胞损伤的钙超载,需要动态控制线粒体Ca2摄取。这通过线粒体钙摄取(MICU)1/2蛋白质来确保,所述蛋白质门控线粒体钙单转体(mtCU)的孔。MICU1在心脏中相对稀疏,最近的研究声称哺乳动物心脏缺乏mtCU的MICU1门控。然而,遗传模型尚未测试。我们发现MICU1存在于无故障的人类心脏中与MCU的复合物中。此外,使用小鼠遗传模型和药理学,我们显示MICU1和MICU2控制心脏线粒体Ca2+流入,MICU1缺失改变了心肌细胞线粒体钙信号和能量代谢。MICU1损失导致mtCU组成和丰度发生实质性的补偿性变化,早期增加了基本MCU调节器(EMRE)的营业额,稍后,MCU,这限制了线粒体Ca2+的摄取并允许细胞存活。因此,MICU1损失的主要后果和随之而来的稳健补偿都突出了MICU1在跳动心脏中的相关性。
    Activating Ca2+-sensitive enzymes of oxidative metabolism while preventing calcium overload that leads to mitochondrial and cellular injury requires dynamic control of mitochondrial Ca2+ uptake. This is ensured by the mitochondrial calcium uptake (MICU)1/2 proteins that gate the pore of the mitochondrial calcium uniporter (mtCU). MICU1 is relatively sparse in the heart, and recent studies claimed the mammalian heart lacks MICU1 gating of mtCU. However, genetic models have not been tested. We find that MICU1 is present in a complex with MCU in nonfailing human hearts. Furthermore, using murine genetic models and pharmacology, we show that MICU1 and MICU2 control cardiac mitochondrial Ca2+ influx, and that MICU1 deletion alters cardiomyocyte mitochondrial calcium signaling and energy metabolism. MICU1 loss causes substantial compensatory changes in the mtCU composition and abundance, increased turnover of essential MCU regulator (EMRE) early on and, later, of MCU, that limit mitochondrial Ca2+ uptake and allow cell survival. Thus, both the primary consequences of MICU1 loss and the ensuing robust compensation highlight MICU1\'s relevance in the beating heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与体外模型或治疗剂一起使用的诱导多能干细胞(iPSC)的彻底表征是必要的。甚至来自单个供体的iPSC也可以在细胞系内和细胞系之间表现出变异性。这可能导致结果的异质性,并阻碍细胞替代疗法的有希望的未来。在这项研究中,测试人和恒河猴iPSC的细胞接种密度,以使产生的心肌细胞的细胞系特异性产量最大化。我们发现,尽管使用相同的iPSC生成和分化方案,对于此处使用的四种细胞系,特定细胞系最佳分化效率的细胞接种密度可能相差四倍。此外,细胞系在细胞接种密度范围内显示出差异,它们可以耐受而不会严重丧失分化效率。总的来说,我们的数据表明,细胞接种密度是灵长类iPSC分化为心肌细胞效率低下的关键参数,并且用相同的附加型方法产生的iPSC仍然表现出相当大的异质性。因此,需要iPSC线的单独表征,必须确保与体内过程的功能可比性,以保证使用iPSC进行体外研究的可翻译性。
    A thorough characterization of induced pluripotent stem cells (iPSCs) used with in vitro models or therapeutics is essential. Even iPSCs derived from a single donor can exhibit variability within and between cell lines, which can lead to heterogeneity in results and hinder the promising future of cell replacement therapies. In this study, the cell seeding density of human and rhesus monkey iPSCs was tested to maximize the cell line-specific yield of the generated cardiomyocytes. We found that, despite using the same iPSC generation and differentiation protocols, the cell seeding density for the cell line-specific best differentiation efficiency could differ by a factor of four for the four cell lines used here. In addition, the cell lines showed differences in the range of cell seeding densities that they could tolerate without the severe loss of differentiation efficiency. Overall, our data show that the cell seeding density is a critical parameter for the differentiation inefficiency of primate iPSCs to cardiomyocytes and that iPSCs generated with the same episomal approach still exhibit considerable heterogeneity. Therefore, individual characterization of iPSC lines is required, and functional comparability with in vivo processes must be ensured to warrant the translatability of in vitro research with iPSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ankyrin-R(AnkR;由ANK1编码)表达改变与舒张功能相关,左心室重构,射血分数保留的心力衰竭(HFpEF)。首先在红细胞中发现,AnkR在其他组织中的作用,尤其是心脏,研究较少。这里,我们确定了小鼠心肌中AnkR的经典和小亚型的表达。我们证明心肌细胞主要表达小AnkR(sAnkR),而心脏成纤维细胞主要表达经典AnkR。由于心脏成纤维细胞中的经典AnkR表达尚未研究,我们专注于在这些细胞中的表达和定位。AnkR在成纤维细胞的核周和细胞质区域均表达,与反式高尔基体网络蛋白38TGN38相当重叠,表明在运输中具有潜在作用。研究AnkR在成纤维细胞中的作用,我们在激活的成纤维细胞中产生了缺乏AnkR的小鼠(Ank1-ifKO小鼠)。值得注意的是,Ank1-ifKO小鼠成纤维细胞显示胶原蛋白压缩减少,支持AnkR在正常成纤维细胞功能中的新作用。在整个动物层面,作为对心力衰竭模型的回应,与同窝对照相比,Ank1-ifKO小鼠显示纤维化和T波倒置增加,同时保留心脏射血分数。Ank1-ifKO小鼠的I型胶原纤维减少,提示AnkR在胶原纤维成熟中的新功能。总之,我们的发现说明了AnkR在心脏成纤维细胞中的新表达以及在应激反应的心脏功能中的潜在作用。
    Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号