auditory hair cells

  • 文章类型: Journal Article
    在哺乳动物中,由于听觉上皮缺乏再生能力,听力损失是不可逆的。然而,哺乳动物耳蜗中的干/祖细胞可能是听力再生的治疗靶标。泛素蛋白酶体系统在耳蜗发育和维持中起着重要作用。在这项研究中,我们研究了泛素C末端水解酶L1(UCHL1)在听觉支持细胞(SC)向毛细胞(HC)转分化过程中的作用.随着HC的发展,UCHL1的表达逐渐降低,并且仅限于内柱细胞和P2和P7之间的第三行Deiters'细胞,这表明表达UCHL1的细胞与具有Lgr5阳性祖细胞的细胞相似。即使在用γ-分泌酶抑制剂和Wnt激动剂产生过量HC的条件下,UCHL1表达也降低。此外,LDN-57444对UCHL1的抑制作用导致HC数量增加。机械上,LDN-57444增加mTOR复合物1活性并允许SC转分化为HC。抑制UCHL1通过调节mTOR通路诱导听觉SCs和祖细胞转分化为HC。
    In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters\' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    识别基因调控网络中的因果相互作用需要准确理解转录因子与其靶基因之间的时滞关系。在这里,我们描述了延迟(描述滞后因果关系的缩写),一种卷积神经网络,用于在伪时间排序的单细胞轨迹上推断基因调控关系。我们表明,将有监督的深度学习与伪时间滞后轨迹的联合概率矩阵相结合,可以使网络克服基于普通Granger因果关系的方法的重要限制。例如,无法推断循环关系,如反馈循环。我们的网络优于几种常见的推断基因调控的方法,当给予部分真相标签时,从单细胞RNA测序(scRNA-seq)和单细胞ATAC测序(scATAC-seq)数据集预测新的调控网络。为了验证这种方法,我们使用DELAY来识别听觉毛细胞调节网络中的重要基因和模块,以及两种毛细胞辅因子(Hist1h1c和Ccnd1)的可能的DNA结合伴侣和毛细胞特异性转录因子Fiz1的新型结合序列。我们在https://github.com/calebclayreagor/DELAY的开源许可证下提供易于使用的DELAY实现。
    Identifying the causal interactions in gene-regulatory networks requires an accurate understanding of the time-lagged relationships between transcription factors and their target genes. Here we describe DELAY (short for Depicting Lagged Causality), a convolutional neural network for the inference of gene-regulatory relationships across pseudotime-ordered single-cell trajectories. We show that combining supervised deep learning with joint probability matrices of pseudotime-lagged trajectories allows the network to overcome important limitations of ordinary Granger causality-based methods, for example, the inability to infer cyclic relationships such as feedback loops. Our network outperforms several common methods for inferring gene regulation and, when given partial ground-truth labels, predicts novel regulatory networks from single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) data sets. To validate this approach, we used DELAY to identify important genes and modules in the regulatory network of auditory hair cells, as well as likely DNA-binding partners for two hair cell cofactors (Hist1h1c and Ccnd1) and a novel binding sequence for the hair cell-specific transcription factor Fiz1. We provide an easy-to-use implementation of DELAY under an open-source license at https://github.com/calebclayreagor/DELAY.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Caffeine is being increasingly used in daily life, such as in drinks, cosmetics, and medicine. Caffeine is known as a mild stimulant of the central nervous system, which is also closely related to neurologic disease. However, it is unknown whether caffeine causes hearing loss, and there is great interest in determining the effect of caffeine in cochlear hair cells. First, we explored the difference in auditory brainstem response (ABR), organ of Corti, stria vascularis, and spiral ganglion neurons between the control and caffeine-treated groups of C57BL/6 mice. RNA sequencing was conducted to profile mRNA expression differences in the cochlea of control and caffeine-treated mice. A CCK-8 assay was used to evaluate the approximate concentration of caffeine. Flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting were performed to detect the effects of SGK1 in HEI-OC1 cells and basilar membranes. In vivo research showed that 120 mg/ kg caffeine injection caused hearing loss by damaging the organ of Corti, stria vascularis, and spiral ganglion neurons. RNA-seq results suggested that SGK1 might play a vital role in ototoxicity. To confirm our observations in vitro, we used the HEI-OC1 cell line, a cochlear hair cell-like cell line, to investigate the role of caffeine in hearing loss. The results of flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting showed that caffeine caused autophagy and apoptosis via SGK1 pathway. We verified the interaction between SGK1 and HIF-1α by co-IP. To confirm the role of SGK1 and HIF-1α, GSK650394 was used as an inhibitor of SGK1 and CoCl2 was used as an inducer of HIF-1α. Western blot analysis suggested that GSK650394 and CoCl2 relieved the caffeine-induced apoptosis and autophagy. Together, these results indicated that caffeine induces autophagy and apoptosis in auditory hair cells via the SGK1/HIF-1α pathway, suggesting that caffeine may cause hearing loss. Additionally, our findings provided new insights into ototoxic drugs, demonstrating that SGK1 and its downstream pathways may be potential therapeutic targets for hearing research at the molecular level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Age-related hidden hearing loss is often described as a cochlear synaptopathy that results from a progressive degeneration of the inner hair cell (IHC) ribbon synapses. The functional changes occurring at these synapses during aging are not fully understood. Here, we characterized this aging process in IHCs of C57BL/6J mice, a strain which is known to carry a cadherin-23 mutation and experiences early hearing loss with age. These mice, while displaying a large increase in auditory brainstem thresholds due to 50% loss of IHC synaptic ribbons at middle age (postnatal day 365), paradoxically showed enhanced acoustic startle reflex suggesting a hyperacusis-like response. The auditory defect was associated with a large shrinkage of the IHCs\' cell body and a drastic enlargement of their remaining presynaptic ribbons which were facing enlarged postsynaptic AMPAR clusters. Presynaptic Ca2+ microdomains and the capacity of IHCs to sustain high rates of exocytosis were largely increased, while on the contrary the expression of the fast-repolarizing BK channels, known to negatively control transmitter release, was decreased. This age-related synaptic plasticity in IHCs suggested a functional potentiation of synaptic transmission at the surviving synapses, a process that could partially compensate the decrease in synapse number and underlie hyperacusis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: The investigation of cochlear hair cells and lateral wall is a time-consuming and labor-intensive process. However, it is a mandatory experiment in audiology research. Here we suggest a novel method for investigating the inner ear microstructures from intact cochleae using two-photon laser scanning microscopy (TPLSM). This technique guarantees fewer artifacts and technical simplicity.
    METHODS: Using TPLSM, we investigated the whole mount cochleae, decalcified cochleae, and cleared cochleae of wild type C57BL/6 mice. CX3CR1+/GFP mice were used to investigate the feasibility of visualizing cellular structures in the cochlear spiral ligament. All samples were investigated without staining.
    RESULTS: Endogenous fluorescence emission from the outer hair cells was strong enough to be distinguished from the other structures in all samples. From the single apical view, 50 and 90% of the whole hair cells of the decalcified cochleae and cleared cochleae, respectively, could be visualized without staining using TPLSM. Capillary structure of stria vascularis and spiral ligament could be visualized by endogenous fluorescence without staining.
    CONCLUSIONS: We successfully investigated the hair cells and lateral wall of mouse cochleae using TPLSM without using staining or any destructive procedures. This method is easier, faster, and more reliable than conventional methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Barhl1, a mouse homologous gene of Drosophila BarH class homeobox genes, is highly expressed within the inner ear and crucial for the long-term maintenance of auditory hair cells that mediate hearing and balance, yet little is known about the molecular events underlying Barhl1 regulation and function in hair cells. In this study, through data mining and in vitro report assay, we firstly identified Barhl1 as a direct target gene of Atoh1 and one E-box (E3) in Barhl1 3\' enhancer is crucial for Atoh1-mediated Barhl1 activation. Then we generated a mouse embryonic stem cell (mESC) line carrying disruptions on this E3 site E-box (CAGCTG) using CRISPR/Cas9 technology and this E3 mutated mESC line is further subjected to an efficient stepwise hair cell differentiation strategy in vitro. Disruptions on this E3 site caused dramatic loss of Barhl1 expression and significantly reduced the number of induced hair cell-like cells, while no affections on the differentiation toward early primitive ectoderm-like cells and otic progenitors. Finally, through RNA-seq profiling and gene ontology (GO) enrichment analysis, we found that this E3 box was indispensable for Barhl1 expression to maintain hair cell development and normal functions. We also compared the transcriptional profiles of induced cells from CDS mutated and E3 mutated mESCs, respectively, and got very consistent results except the Barhl1 transcript itself. These observations indicated that Atoh1-mediated Barhl1 expression could have important roles during auditory hair cell development. In brief, our findings delineate the detail molecular mechanism of Barhl1 expression regulation in auditory hair cell differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    BACKGROUND: New research in animal models indicates that even at lower intensities, noise exposure can induce defects in the synapses of the auditory pathway. However, only very high levels of noise exposure lead to mechanical hair cell damage with lesions of the inner ear and measurable hearing loss (audiogram; distortion product otoacoustic emissions, DPOAE). This paper revises the literature, starting with a case study.
    METHODS: A 41-year-old patient suffered from hearing loss and tinnitus in the right ear following a car accident with airbag deployment. Hearing loss recovered partially, tinnitus and difficulties in speech discrimination persisted. Audiometry showed typical high-frequency hearing loss (40 dB) and tonal tinnitus (8 kHz). Although DPOAE and ABR potentials (auditory brainstem response, wave III and V) were completely normal 6 months after the accident, there was no detectable cochlear action potential (CAP) in electrocochleography (ECochG).
    CONCLUSIONS: These findings indicate recovery of initial hair cell damage, whereas synaptic transformation remains reduced and slight hearing loss and poor speech perception in complex listening situations persist. This phenomenon has been described as \"hidden hearing loss\" in newer literature. Although similar retrocochlear lesions in the auditory pathway could be detected in animal models, valid data in humans are currently lacking because no adequate diagnostic methods are available.
    CONCLUSIONS: Noise trauma initially results in hair cell damage. After recovery, hearing loss may persist, which can be due to synaptic lesions in the first neuron. An adequate testbattery has to be developped.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Noise is an important socioeconomic problem in industrialized countries. Development of efficient treatment options for the audiological phenomena resulting from noise-induced hearing loss requires in-depth understanding of the underlying damage mechanisms causing peripheral and central nervous changes. Mechanical damage, ischemia and excitotoxicity are mainly responsible for noise-induced cell death and biophysical changes in the cochlea. Auditory synaptopathy is an additional consequence. Besides these cochlear pathologies, noise exposure leads to extensive changes within the central auditory pathway. Overstimulation causes early cell loss in the ventral cochlear nucleus just after noise exposure, which is in accordance with enhancement of apoptotic mechanisms within the corresponding timeframe. In contrast to the cell loss in lower auditory structures due to overstimulation, the later significant reduction of cell density in higher auditory structures is due to sensory deprivation. Changes in network homeostasis seem to partially compensate structural losses by modulation of spontaneous activity. However, central nervous processing of auditory information is permanently impaired by the neuroplastic changes. Unfortunately, the various noise-induced peripheral and central pathologies are difficult to treat. New therapeutic approaches are required, particularly for treatment of central nervous processing disorders and auditory synaptopathy, which contribute to audiological phenomena such as tinnitus, hyperacusis and poor speech perception in noise.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Electrocochleography (ECochG) is a potential clinically valuable technique for predicting speech perception outcomes in cochlear implant (CI) recipients, among other uses. Current analysis is limited by an inability to quantify hair cell and neural contributions which are mixed in the ongoing part of the response to low frequency tones. Here, we used a model based on source properties to account for recorded waveform shapes and to separate the combined signal into its components. The model for the cochlear microphonic (CM) was a sinusoid with parameters for independent saturation of the peaks and the troughs of the responses. The model for the auditory nerve neurophonic (ANN) was the convolution of a unit potential and population cycle histogram with a parameter for spread of excitation. Phases of the ANN and CM were additional parameters. The average cycle from the ongoing response was the input, and adaptive fitting identified CM and ANN parameters that best reproduced the waveform shape. Test datasets were responses recorded from the round windows of CI recipients, from the round window of gerbils before and after application of neurotoxins, and with simulated signals where each parameter could be manipulated in isolation. Waveforms recorded from 284 CI recipients had a variety of morphologies that the model fit with an average r2 of 0.97 ± 0.058 (standard deviation). With simulated signals, small systematic differences between outputs and inputs were seen with some variable combinations, but in general there were limited interactions among the parameters. In gerbils, the CM reported was relatively unaffected by the neurotoxins. In contrast, the ANN was strongly reduced and the reduction was limited to frequencies of 1,000 Hz and lower, consistent with the range of strong neural phase-locking. Across human CI subjects, the ANN contribution was variable, ranging from nearly none to larger than the CM. Development of this model could provide a means to isolate hair cell and neural activity that are mixed in the ongoing response to low-frequency tones. This tool can help characterize the residual physiology across CI subjects, and can be useful in other clinical settings where a description of the cochlear physiology is desirable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号