Visual Cortex

视觉皮层
  • 文章类型: Journal Article
    对皮质神经元的突触输入在成人感觉系统中是高度结构化的,使得沿着树突的相邻突触被类似的刺激激活。这种突触输入的组织,称为突触聚类,是高保真信号处理所必需的,在睁眼之前已经可以观察到聚集的突触。然而,在开发过程中如何出现集群输入是未知的。这里,在出生后第2周,我们同时进行体内全细胞膜片钳和树突状钙成像,将自发突触输入映射到小鼠初级视皮层2/3层神经元的树突,直至睁眼.我们发现,在这个发育期,功能性突触的数量和传递事件的频率增加了几倍。在产后第二个星期开始时,突触在狭窄的树突节段中特别组装,而其他片段缺乏突触。产后第二周结束时,就在睁开眼睛之前,树突几乎完全被协同突触的结构域覆盖。最后,与相邻突触的协同作用与突触的稳定和增强有关。因此,聚集的突触形成在不同的功能域中,大概是为树突配备了计算模块,以在睁开眼睛时进行高容量的感觉处理。
    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:研究表明,视觉感知学习(VPL)与修改更高级别的决策区域中的神经活动有关。然而,前额叶和视觉皮层在VPL中的因果作用尚不清楚.这里,我们研究了前额叶和视觉皮层的阳极经颅直流电刺激(tDCS)如何在早期和后期调节VPL,以及多个脑区的作用.
    方法:关于连贯运动方向识别任务的感知学习包括早期和后期。经过早期训练,参与者需要不断训练才能到达高原;一旦到达高原,参与者进入了后期阶段。60名参与者被随机分为五组。不管前期和后期的训练,四组在右背外侧前额叶皮层(rDLPFC)和右颞中区(rMT)接受多目标tDCS,rDLPFC上的单目标tDCS,和rMT或假刺激的单目标tDCS,一组在同侧大脑区域受到刺激(即,左MT)。
    结果:与假刺激相比,rDLPFC或rMT上的多目标和两个单目标tDCS提高了后测性能,并在早期加速了学习。然而,多目标tDCS和两个单目标tDCS为VPL带来了等效的好处。此外,当阳极tDCS应用于同侧大脑区域时,这些有益效果不存在.在后期,上述对多靶标或单靶标tDCS诱导的VPL的促进作用消失。
    结论:这项研究表明前额叶和视觉皮层在通过阳极tDCS进行视觉运动知觉学习中的因果作用,但未能通过同时刺激前额叶和视觉皮层来发现更大的有益效果。未来的研究应该研究多个大脑区域之间的功能关联,以进一步促进VPL。
    BACKGROUND: Research has shown that visual perceptual learning (VPL) is related to modifying neural activity in higher level decision-making regions. However, the causal roles of the prefrontal and visual cortexes in VPL are still unclear. Here, we investigated how anodal transcranial direct current stimulation (tDCS) of the prefrontal and visual cortices modulates VPL in the early and later phases and the role of multiple brain regions.
    METHODS: Perceptual learning on the coherent motion direction identification task included early and later stages. After early training, participants needed to continuously train to reach a plateau; once the plateau was reached, participants entered a later stage. Sixty participants were randomly divided into five groups. Regardless of the training at the early and later stages, four groups received multitarget tDCS over the right dorsolateral prefrontal cortex (rDLPFC) and right middle temporal area (rMT), single-target tDCS over the rDLPFC, and single-target tDCS over the rMT or sham stimulation, and one group was stimulated at the ipsilateral brain region (i.e., left MT).
    RESULTS: Compared with sham stimulation, multitarget and two single-target tDCS over the rDLPFC or rMT improved posttest performance and accelerated learning during the early period. However, multitarget tDCS and two single-target tDCS led to equivalent benefits for VPL. Additionally, these beneficial effects were absent when anodal tDCS was applied to the ipsilateral brain region. For the later period, the above facilitating effects on VPL induced by multitarget or single-target tDCS disappeared.
    CONCLUSIONS: This study suggested the causal role of the prefrontal and visual cortices in visual motion perceptual learning by anodal tDCS but failed to find greater beneficial effects by simultaneously stimulating the prefrontal and visual cortices. Future research should investigate the functional associations between multiple brain regions to further promote VPL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自从1995年首次描述视觉雪花综合征(VSS)以来,特别是在过去的5-10年中,人们对该病症的表型分析以及将其与诸如具有先兆和致幻剂持续感知障碍的偏头痛之类的病症进行区分越来越感兴趣。结构和功能神经影像学在这方面提供了有价值的见解,产生功能网络和感兴趣的解剖区域,其中右舌回是特别值得注意的。各种方式,包括功能磁共振成像(fMRI),正电子发射断层扫描(PET),和单光子发射计算机断层扫描(SPECT),都在视觉雪患者中进行了研究。在这篇文章中,我们对VSS的神经影像学进行了全面的文献综述.
    Since the first description of visual snow syndrome (VSS) in 1995, there has been increasing interest particularly within the past 5-10 years in phenotyping the condition and differentiating it from conditions such as migraine with aura and hallucinogen persisting perception disorder. Structural and functional neuroimaging has provided valuable insights in this regard, yielding functional networks and anatomical regions of interest, of which the right lingual gyrus is of particular note. Various modalities, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT), have all been studied in patients with visual snow. In this article, we conduct a comprehensive literature review of neuroimaging in VSS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在感官加工的时间尺度上,神经元网络具有相对固定的解剖学连通性,而神经元之间的功能相互作用可以根据网络内神经元的正在进行的活动而变化。因此,我们假设不同类型的刺激可能导致这些网络显示依赖于刺激的功能连接模式。为了检验这个假设,我们分析了艾伦研究所的单细胞分辨率电生理数据,同时记录来自小鼠视觉皮层6个不同区域的神经元的刺激诱发活动。比较不同刺激类型期间的功能连接模式,我们做了几个重要的观察:(1)虽然不同功能基序的频率在刺激中被保留,这些基序中神经元的身份发生了变化;(2)单个大脑区域中包含的功能模块的程度随着刺激的复杂性而增加。总之,我们的工作揭示了神经元群相互作用以处理传入感觉信息的方式的意外刺激依赖性。
    On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity, while functional interactions between neurons can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed single-cell resolution electrophysiological data from the Allen Institute, with simultaneous recordings of stimulus-evoked activity from neurons across 6 different regions of mouse visual cortex. Comparing the functional connectivity patterns during different stimulus types, we made several nontrivial observations: (1) while the frequencies of different functional motifs were preserved across stimuli, the identities of the neurons within those motifs changed; (2) the degree to which functional modules are contained within a single brain region increases with stimulus complexity. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    感官输入进入一个不断活跃的大脑,他们的状态总是从一个时刻变化到下一个时刻。目前,很少有人知道如何进行,自发的大脑活动参与在线任务处理。我们采用了7TeslafMRI和阈值水平的视觉感知任务来探测前刺激持续的大脑活动对感知决策和意识识别的影响。来自分布的大脑区域的前刺激活动,包括默认模式和扣带操作网络的视觉皮层和区域,对意识识别的敏感性和标准产生了一系列不同的影响,和分类性能。我们进一步阐明了这些行为效应的潜在机制,揭示了前刺激活动如何以高度特定和网络相关的方式调节刺激处理的多个方面。这些发现揭示了迄今为止未知的网络机制,潜在的大脑活动对意识感知的影响,并且可能对理解自发活动在其他大脑功能中的确切作用有意义。
    Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity\'s influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物已经进化出针对性别的适应性,以减少食物短缺时的能量使用。这些适应对于外周组织有很好的描述,尽管人们对能源昂贵的大脑如何适应食物限制知之甚少,以及这种适应在不同性别之间的差异。这里,我们研究了食物限制如何影响成年雄性和雌性小鼠初级视觉皮层(V1)的能量使用和功能.V1的分子分析和RNA测序显示,在男性中,但不是女性,食物限制显著调节规范,能量调节途径,包括与waithAMP激活的蛋白激酶相关的途径,过氧化物酶体增殖物激活受体α,哺乳动物雷帕霉素靶,和氧化磷酸化。此外,我们发现与男性相比,女性的食物限制没有显著影响V1ATP使用或视觉编码精度(通过取向选择性评估).已知降低血清瘦素对于在食物限制期间触发V1的节能变化是必需的。与此一致,我们发现,在食物限制的男性中,血清瘦素显著降低,但在食物限制的女性中没有显著变化。总的来说,我们的发现表明,雌性小鼠的皮质功能和能量使用比雄性小鼠更能适应食物限制。大脑皮层,因此,有助于特定性别,针对食物限制的节能适应。
    Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过使用高级扩散磁共振成像(dMRI)研究微结构和代谢脑环境对青光眼的贡献及其与视野(VF)损失模式的关联,质子磁共振波谱(MRS),和临床眼科措施。
    69例青光眼和健康受试者在3特斯拉时接受了dMRI和/或MRS。从VF视野和光学相干断层扫描收集眼科数据。在早期青光眼中,比较了视神经辐射中微结构完整性的dMRI参数和视觉皮层中MRS衍生的神经化学水平,晚期青光眼,和健康的控制。多变量回归用于将神经影像学指标与16种原型VF损失模式相关联。我们还对神经成像进行了排名,眼科,和人口统计属性方面的信息增益,以确定其对青光眼的重要性。
    在dMRI中,降低分数各向异性,径向峰度,弯曲度和径向扩散率的增加与两侧更大的总体VF损失相关。区域,轴突内空间和轴突外空间扩散率的降低与右眼上高度区域和左眼下高度区域的VF损失更大相关。在MRS中,早期和晚期青光眼患者的γ-氨基丁酸(GABA)较低,谷氨酸,和胆碱水平高于健康对照组。GABA似乎与鼻上VF损失更相关,谷氨酸和胆碱较多,VF损失较差。胆碱对早期青光眼的重要性排名第三,而放射状峰度和GABA在晚期青光眼中排名第四和第五。
    我们的研究结果强调了非侵入性神经成像生物标志物和分析建模对于揭示青光眼神经变性的重要性,以及它们如何反映互补的VF损失模式。
    UNASSIGNED: To investigate the contributions of the microstructural and metabolic brain environment to glaucoma and their association with visual field (VF) loss patterns by using advanced diffusion magnetic resonance imaging (dMRI), proton magnetic resonance spectroscopy (MRS), and clinical ophthalmic measures.
    UNASSIGNED: Sixty-nine glaucoma and healthy subjects underwent dMRI and/or MRS at 3 Tesla. Ophthalmic data were collected from VF perimetry and optical coherence tomography. dMRI parameters of microstructural integrity in the optic radiation and MRS-derived neurochemical levels in the visual cortex were compared among early glaucoma, advanced glaucoma, and healthy controls. Multivariate regression was used to correlate neuroimaging metrics with 16 archetypal VF loss patterns. We also ranked neuroimaging, ophthalmic, and demographic attributes in terms of their information gain to determine their importance to glaucoma.
    UNASSIGNED: In dMRI, decreasing fractional anisotropy, radial kurtosis, and tortuosity and increasing radial diffusivity correlated with greater overall VF loss bilaterally. Regionally, decreasing intra-axonal space and extra-axonal space diffusivities correlated with greater VF loss in the superior-altitudinal area of the right eye and the inferior-altitudinal area of the left eye. In MRS, both early and advanced glaucoma patients had lower gamma-aminobutyric acid (GABA), glutamate, and choline levels than healthy controls. GABA appeared to associate more with superonasal VF loss, and glutamate and choline more with inferior VF loss. Choline ranked third for importance to early glaucoma, whereas radial kurtosis and GABA ranked fourth and fifth for advanced glaucoma.
    UNASSIGNED: Our findings highlight the importance of non-invasive neuroimaging biomarkers and analytical modeling for unveiling glaucomatous neurodegeneration and how they reflect complementary VF loss patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视觉夹带是一种强大且广泛使用的研究工具,用于研究大脑中的视觉信息处理。虽然许多夹带研究都集中在14-16Hz的频率上,人们对理解更高频率的视觉夹带有了新的兴趣(例如,伽马带夹带)。值得注意的是,最近的开创性研究表明,在40Hz的伽玛带视觉夹带可能通过刺激特定的神经集合在阿尔茨海默病(AD)的背景下具有治疗作用,利用GABA能信号。尽管有如此有希望的发现,很少有研究研究了伽马带视觉夹带的最佳参数。在这里,我们使用高密度脑磁图(MEG)检查了32,40或48Hz的视觉刺激是否产生最佳视觉夹带反应.我们的结果表明,在每种情况下,强烈的夹带反应都位于初级视觉皮层。32和40Hz的夹带反应相对于48Hz更强,表明在这些较低的伽马带频率下神经集合的更强大的同步。此外,32和40Hz夹带反应显示了整个试验的典型习惯模式,但这种效应在48Hz时不存在。最后,相对于32和48Hz的夹带,视觉皮层与顶叶和前额叶皮层之间的连通性在40时趋于最强。这些结果表明,视觉皮层中的神经集合可能在32和40Hz左右共振,因此在这些频率下更容易产生光刺激。新兴的AD疗法,迄今为止专注于40赫兹夹带,可能在较低的相对较高的伽马频率下更有效,尽管需要在临床人群中开展额外的工作来证实这些发现.实践要点:伽玛带视觉夹带已成为消除阿尔茨海默病中淀粉样蛋白的治疗方法,但其最优参数未知。我们发现32和40Hz的夹带比48Hz更强,这表明神经集合更喜欢在这些相对较低的伽马带频率周围共振。这些发现可能为创新AD疗法的开发和完善以及GABA能视觉皮层功能的研究提供信息。
    Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer\'s disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer\'s disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对象分类已被提出作为灵长类腹侧视觉流的主要目标,并已被用作视觉系统的深度神经网络模型(DNN)的优化目标。然而,视觉大脑区域代表许多不同类型的信息,并且仅对对象身份的分类进行优化不会限制其他信息如何在视觉表示中编码。关于不同场景参数的信息可以完全丢弃(\'不变性\'),在种群活动的非干扰子空间中表示(“因式分解”)或以纠缠方式编码。在这项工作中,我们提供的证据表明,因式分解是生物视觉表征的规范原则。在猴子腹侧视觉层次中,我们发现,在更高级别的区域中,对象身份的对象姿态和背景信息的因式分解增加,并且极大地有助于提高对象身份解码性能。然后,我们对单个场景参数的分解进行了大规模分析-照明,背景,摄像机视点,和对象姿态-在视觉系统的不同DNN模型库中。最匹配神经的模型,功能磁共振成像,来自12个数据集的猴子和人类的行为数据往往是最强烈地分解场景参数的数据。值得注意的是,这些参数的不变性与神经和行为数据的匹配并不一致,这表明,在因式分解的活动子空间中维护非类信息通常比完全丢弃它更可取。因此,我们认为视觉场景信息的分解是大脑及其DNN模型中广泛使用的策略。
    看图片时,我们可以快速识别一个可识别的物体,比如苹果,对它应用一个单词标签。尽管广泛的神经科学研究集中在人类和猴子的大脑如何实现这种识别,我们对大脑和类似大脑的计算机模型如何解释视觉场景的其他复杂方面的理解-例如对象位置和环境上下文-仍然不完整。特别是,目前尚不清楚物体识别在多大程度上以牺牲其他重要场景细节为代价。例如,可以同时处理场景的各个方面。另一方面,一般物体识别可能会干扰这些细节的处理。为了调查这一点,Lindsey和Issa分析了12个猴子和人脑数据集,以及许多计算机模型,探索场景的不同方面如何在神经元中编码,以及这些方面如何由计算模型表示。分析表明,阻止有效分离和保留有关对象姿势和环境上下文的信息会恶化猴子皮层神经元中的对象识别。此外,最类似大脑的计算机模型可以独立保存其他场景细节,而不会干扰物体识别。研究结果表明,人类和猴子的高级腹侧视觉处理系统能够以比以前所理解的更复杂的方式来表示环境。在未来,研究更多的大脑活动数据可以帮助识别编码信息的丰富程度,以及它如何支持空间导航等其他功能。这些知识可以帮助建立以相同方式处理信息的计算模型,有可能提高他们对现实世界场景的理解。
    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (\'invariance\'), represented in non-interfering subspaces of population activity (\'factorization\') or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters - lighting, background, camera viewpoint, and object pose - in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.
    When looking at a picture, we can quickly identify a recognizable object, such as an apple, applying a single word label to it. Although extensive neuroscience research has focused on how human and monkey brains achieve this recognition, our understanding of how the brain and brain-like computer models interpret other complex aspects of a visual scene – such as object position and environmental context – remains incomplete. In particular, it was not clear to what extent object recognition comes at the expense of other important scene details. For example, various aspects of the scene might be processed simultaneously. On the other hand, general object recognition may interfere with processing of such details. To investigate this, Lindsey and Issa analyzed 12 monkey and human brain datasets, as well as numerous computer models, to explore how different aspects of a scene are encoded in neurons and how these aspects are represented by computational models. The analysis revealed that preventing effective separation and retention of information about object pose and environmental context worsened object identification in monkey cortex neurons. In addition, the computer models that were the most brain-like could independently preserve the other scene details without interfering with object identification. The findings suggest that human and monkey high level ventral visual processing systems are capable of representing the environment in a more complex way than previously appreciated. In the future, studying more brain activity data could help to identify how rich the encoded information is and how it might support other functions like spatial navigation. This knowledge could help to build computational models that process the information in the same way, potentially improving their understanding of real-world scenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视觉在我们日常生活中感知外部刺激和信息中起着重要作用。色觉的神经机制很复杂,涉及各种细胞的协调功能,如视网膜细胞和外侧膝状核细胞,以及视觉皮层的多个层面。在这项工作中,我们回顾了关于这个问题的实验和理论研究的历史,从视觉系统单个细胞的基本功能到神经信号传输中的编码和不同级别的复杂大脑过程。我们讨论各种假设,模型,以及与色觉机制相关的理论,并提出了一些开发新型植入设备的建议,这些设备可能有助于恢复视障人士的色觉,或将人工色觉引入需要的人。
    Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号