Type VII Secretion Systems

VII 型分泌系统
  • 文章类型: Journal Article
    机会病原体金黄色葡萄球菌的成功定殖取决于其与其他微生物相互作用的能力。金黄色葡萄球菌菌株具有VII型分泌系统(T7SSb)的T7b亚型,一种在各种芽孢杆菌中发现的蛋白质分泌系统,在细菌拮抗和毒力中起作用。金黄色葡萄球菌中T7SSb活性的评估受到实验室条件下的低分泌活性和缺乏测量分泌的灵敏测定法的阻碍。这里,我们利用NanoLuc二元技术开发了一种简单的检测方法,通过检测生物发光来监测蛋白质分泌。11个氨基酸的NanoLuc片段与保守底物EsxA的融合允许其在补充大NanoLuc片段和荧光素酶底物后的细胞外检测。在将测定小型化为384孔格式之后,我们使用高通量分析来证明T7SSb依赖性蛋白分泌在菌株和生长温度之间存在差异.我们进一步显示相同的测定可用于监测表面相关毒素底物TspA的分泌。使用这种方法,我们鉴定了介导TspA分泌所需的三种保守的辅助蛋白。共纯化实验证实所有三种蛋白质与TspA形成复合物。
    Successful colonization by the opportunistic pathogen Staphylococcus aureus depends on its ability to interact with other microorganisms. Staphylococcus aureus strains harbour a T7b subtype of type VII secretion system (T7SSb), a protein secretion system found in a wide variety of Bacillota, which functions in bacterial antagonism and virulence. Assessment of T7SSb activity in S. aureus has been hampered by low secretion activity under laboratory conditions and the lack of a sensitive assay to measure secretion. Here, we have utilized NanoLuc binary technology to develop a simple assay to monitor protein secretion via detection of bioluminescence. Fusion of the 11 amino acid NanoLuc fragment to the conserved substrate EsxA permits its extracellular detection upon supplementation with the large NanoLuc fragment and luciferase substrate. Following miniaturization of the assay to 384-well format, we use high-throughput analysis to demonstrate that T7SSb-dependent protein secretion differs across strains and growth temperature. We further show that the same assay can be used to monitor secretion of the surface-associated toxin substrate TspA. Using this approach, we identify three conserved accessory proteins required to mediate TspA secretion. Co-purification experiments confirm that all three proteins form a complex with TspA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    VII型分泌(T7S)系统,也称为ESAT-6分泌(ESX)系统,是分子机器,由于它们在分枝杆菌中的细胞稳态和宿主-病原体相互作用中的影响而获得了极大的关注。后者包括重要的人类病原体,如结核分枝杆菌(Mtb),人类结核病的病因,这构成了每年超过一百万人死亡的大流行。ESX-5系统仅在生长缓慢的致病性分枝杆菌中发现,它介导一大家族毒力因子的分泌:PE和PPE蛋白。分泌驱动力由EccC5提供,EccC5是一种多结构域ATPase,使用四个球形胞质结构域进行操作:一个N末端功能未知的结构域(EccC5DUF)和三个FtsK/SpoIIIEATPase结构域。最近对ESX-3和ESX-5系统的结构和功能研究表明,EccCDUF是具有潜在ATPase活性的ATPase样折叠结构域,其功能对分泌至关重要。这里,MtbEccC5DUF域的晶体结构报告为2.05µ分辨率,它揭示了一个无核苷酸的结构,具有参与ATP结合和水解的简并顺式和反式作用元件。这项晶体学研究,以及对MtbEccC5DUF与ATP/Mg2+相互作用的生物物理评估,支持不存在针对该结构域提出的ATP酶活性。表明,这种变性也存在于其他ESX和ESX样系统的DUF域中,可能表现出不良或无效的ATP酶活性。此外,基于MtbEccC5DUF的N端区域的计算机模拟模型,假设MtbEccC5DUF是一个退化的ATPase结构域,可能保留了六聚体化的能力。这些观察结果引起了人们对DUF结构域作为结构元素的关注,这些结构元素在分泌过程中膜孔的打开和关闭中可能通过参与原聚体间的相互作用。
    Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host-pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金黄色葡萄球菌(S。金黄色葡萄球菌)可以通过在感染细胞内持续存在来逃避抗生素和宿主免疫防御。这里,我们证明在受感染的宿主细胞中,金黄色葡萄球菌VII型分泌系统(T7SS)胞外蛋白B(EsxB)与干扰素基因(STING)蛋白的刺激因子相互作用,并在感染早期抑制巨噬细胞的炎症防御机制。EsxB与STING的结合破坏了EsxB在赖氨酸33处的K48连接的泛素化,从而防止了EsxB降解。此外,EsxB-STING结合似乎中断了2种重要调节蛋白与STING的相互作用:含天冬氨酸-组氨酸-组氨酸-半胱氨酸结构域的蛋白3(DHHC3)和TNF受体相关因子6。这种对STING相互作用的持续双重抑制使巨噬细胞的细胞内促炎途径失调,抑制STING在半胱氨酸91处的棕榈酰化及其在赖氨酸83处的K63连接的泛素化。这些发现揭示了金黄色葡萄球菌T7SS在细胞内巨噬细胞感染期间的免疫逃避机制,这对开发有效的免疫调节剂来对抗金黄色葡萄球菌感染具有重要意义。
    Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING\'s palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌病原体使用蛋白质分泌系统来转运毒力因子并调节基因表达。在致病性分枝杆菌中,包括结核分枝杆菌和marinum分枝杆菌,ESAT-6系统1(ESX-1)的分泌对于宿主相互作用至关重要。ESX-1分泌系统分泌蛋白质底物会破坏吞噬体,在巨噬细胞感染期间允许分枝杆菌细胞质进入。ESX-1系统的缺失或突变减弱分枝杆菌病原体。致病性分枝杆菌通过改变转录来响应细胞质膜中ESX-1系统的存在或不存在。在实验室条件下,EspM阻遏物和WhiB6激活物控制特定ESX-1反应基因的转录,包括ESX-1底物基因。然而,删除espM或whiB6基因不会在巨噬细胞感染时表现出ESX-1底物基因的缺失。在这项研究中,我们确认了EspN,一种关键转录因子,其活性在实验室条件下被EspM阻遏物掩盖。在没有EspM的情况下,EspN在实验室生长和巨噬细胞感染期间激活whiB6和ESX-1基因的转录。EspN也是巨噬细胞内的M.marinum生长和细胞溶解所独立需要的,类似于ESX-1基因,以及斑马鱼幼虫感染模型中的疾病负担。这些发现表明EspN和EspM协调以抵消ESX-1系统的调节并支持分枝杆菌发病机理。重要致病性分枝杆菌,导致结核病和其他长期疾病的原因,使用ESX-1系统来运输控制宿主对感染的反应并促进细菌存活的蛋白质。在这项研究中,我们确定了一种未描述的转录因子,它控制ESX-1基因的表达,是巨噬细胞和动物感染所必需的.然而,在标准实验室条件下,该转录因子不是ESX-1基因的主要调节因子.这些发现确定了一个关键的转录因子,可能控制感染期间主要毒力途径的表达,但其效果在标准实验室菌株和生长条件下无法检测到。
    Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    VII型分泌系统是革兰氏阳性细菌用于将效应蛋白从细胞质输出到细胞外环境的膜包埋纳米机器。这些效应子中的许多是多态毒素,其包含功能未知的N-末端Leu-x-Gly(LXG)结构域和抑制细菌竞争物生长的C-末端毒素结构域。在最近的工作中,研究表明,LXG效应子需要两种同源Lap蛋白才能依赖T7SS输出。这里,我们展示了来自机会性病原体中间链球菌的TelA毒素LXG域的2.6µ结构,并结合了其两个同源Lap靶向因子。该结构揭示了细长的α-螺旋束,其中每个Lap蛋白与LXG结构域的任一端进行广泛的疏水接触。值得注意的是,尽管整体序列同一性低,我们确定了我们的LXG复合物与分枝杆菌的远缘相关的ESXVII型分泌系统输出的PE-PPE异二聚体之间惊人的结构相似性,这意味着在不同的革兰氏阳性细菌中存在一种保守的效应子输出机制.总的来说,我们的研究结果表明,LXG域,结合他们的同源重叠目标因素,代表广泛的T7SS毒素家族的三方分泌信号。
    Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分枝杆菌的细胞壁在与环境的相互作用中起关键作用。它作为选择性过滤器的能力对细菌存活至关重要。细胞壁中的蛋白质通过介导各种代谢物的导入和导出来实现这种功能,从离子到脂质再到蛋白质。鉴定细胞壁蛋白是分配功能的重要步骤,尤其是许多分枝杆菌蛋白缺乏功能特征的同源物。目前用于蛋白质定位的方法具有降低准确性的固有限制。在这里,我们发现尽管活细胞的化学标记并不完全标记表面蛋白,活结核分枝杆菌内的工程化过氧化物酶APEX2的蛋白质标记准确地鉴定了细胞溶质和细胞壁蛋白质组。我们的数据表明,毒力相关的VII型ESX分泌系统的底物暴露于周质,提供对这些蛋白质穿过分枝杆菌细胞包膜的当前未知机制的见解。
    The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    VIIb型分泌系统(T7SSb)是在革兰氏阳性芽孢杆菌中发现的多亚基蛋白出口机器,在细菌间竞争中起关键作用。T7SSb分泌多种靶向密切相关菌株的毒性效应蛋白;然而,T7SSb基因簇中许多保守基因的分泌机制和作用仍然未知。EsaD是金黄色葡萄球菌T7SSb分泌的核酸酶毒素,与其同源免疫蛋白形成分泌前复合物,EsaG,和陪护EsaE.EsaD的上游编码是三种功能未知的小分泌蛋白:EsxB,EsxC,和EsxD。这里,我们表明这三种蛋白质与EsaD结合并充当EsaD输出因子,并且我们报告了完整的T7SSb底物分泌前复合物的初步结构信息。EsaDEG三聚体和EsaDEG-EsxBCD六聚体的低温电子显微镜显示,EsxBCD的掺入赋予了细长的构象,该构象包含附着在长的窄轴上的柔性球状货物结构域,这对于有效的毒素输出至关重要。重要性金黄色葡萄球菌是一种机会性人类病原体,与严重感染和抗微生物药物耐药性有关。金黄色葡萄球菌菌株利用VII型分泌系统来分泌靶向竞争细菌的毒素,可能促进殖民。EsaD是由许多金黄色葡萄球菌菌株以及其他相关细菌物种中的VII型分泌系统分泌的核酸酶毒素。这里,我们确定了三种以前未知功能的小蛋白作为输出因子,有效分泌EsaD所需。我们发现这些蛋白质与EsaD的转运域结合,形成一个具有惊人的甘蔗状构象的复合体。
    OBJECTIVE: Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分枝杆菌利用VII型分泌系统(T7SS)通过其高度疏水性和表皮细胞包膜分泌蛋白质。致病性分枝杆菌有多达五种不同的T7SS,称为ESX-1至ESX-5,它们对生长和毒力至关重要。这里,我们在缺乏ESX-5的抗毒分枝杆菌中使用功能重建的ESX-5系统,以定义每个esx-5基因在系统功能中的作用。通过创建一系列基因缺失并评估成分和膜复合物组装的蛋白质水平,我们观察到,只有五个组成部分的内膜复合体是必需的组装。然而,除了这五个核心组成部分,活性分泌还取决于Esx和PE/PPE底物。标记PPE底物,然后进行亚细胞分馏,表面标记和膜提取表明,这些蛋白质定位于分枝杆菌外膜。这表明它们可以在这个神秘的外部屏障的分泌中发挥作用。这些结果提供了每个esx-5基因在T7SS功能中的作用的第一个完整概述。重要性致病性分枝杆菌,比如臭名昭著的结核分枝杆菌,作为病原体非常成功,部分原因是它们的特殊和表皮细胞包膜,外膜含霉菌酸.这种高度不可渗透的膜的结构鲜为人知,而填充它的蛋白质则更少。为了运输蛋白质穿过它们的细胞包膜,分枝杆菌采用称为VII型分泌的专门转运途径。虽然最近的研究已经阐明了介导跨内膜运输的VII型分泌膜通道,外膜通道的身份仍然是一个黑盒子。这里,我们证明了VII型途径的特定底物可以形成这些通道。阐明通过分枝杆菌外膜分泌蛋白质的途径和机制将允许其用于开发新的分枝杆菌疗法。
    Mycobacteria utilize type VII secretion systems (T7SSs) to secrete proteins across their highly hydrophobic and diderm cell envelope. Pathogenic mycobacteria have up to five different T7SSs, called ESX-1 to ESX-5, which are crucial for growth and virulence. Here, we use a functionally reconstituted ESX-5 system in the avirulent species Mycobacterium smegmatis that lacks ESX-5, to define the role of each esx-5 gene in system functionality. By creating an array of gene deletions and assessing protein levels of components and membrane complex assembly, we observed that only the five components of the inner membrane complex are required for its assembly. However, in addition to these five core components, active secretion also depends on both the Esx and PE/PPE substrates. Tagging the PPE substrates followed by subcellular fractionation, surface labeling and membrane extraction showed that these proteins localize to the mycobacterial outer membrane. This indicates that they could play a role in secretion across this enigmatic outer barrier. These results provide the first full overview of the role of each esx-5 gene in T7SS functionality. IMPORTANCE Pathogenic mycobacteria, such as the notorious Mycobacterium tuberculosis, are highly successful as pathogens, in part due to their specific and diderm cell envelope, with a mycolic acid-containing outer membrane. The architecture of this highly impermeable membrane is little understood and the proteins that populate it even less so. To transport proteins across their cell envelope, mycobacteria employ a specialized transport pathway called type VII secretion. While recent studies have elucidated the type VII secretion membrane channel that mediates transport across the inner membrane, the identity of the outer membrane channel remains a black box. Here, we show evidence that specific substrates of the type VII pathway could form these channels. Elucidating the pathway and mechanism of protein secretion through the mycobacterial outer membrane will allow its exploitation for the development of novel mycobacterial therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    过氧化物酶体是参与许多代谢过程的细胞器,包括脂质代谢,活性氧(ROS)周转,和抗菌免疫反应。然而,过氧化物酶体有助于巨噬细胞中细菌消除的细胞机制仍然难以捉摸。这里,我们研究了在结核分枝杆菌(Mtb)感染期间iPSC衍生的人巨噬细胞(iPSDM)中的过氧化物酶体功能.我们发现Mtb触发的过氧化物酶体生物发生需要ESX-17型分泌系统,对于细胞溶质访问至关重要。缺乏过氧化物酶体的iPSDM允许Mtb野生型(WT)复制,但能够限制缺少功能ESX-1的Mtb突变体,这表明过氧化物酶体在控制胞质而不是吞噬体Mtb中的作用。使用基因编码的定位依赖性ROS探针,我们发现过氧化物酶体在MtbWT感染期间增加了ROS水平。因此,人类巨噬细胞通过增加主要产生ROS以限制细胞溶质Mtb的过氧化物酶体来应答感染。我们的数据揭示了过氧化物酶体控制,ROS介导的机制,有助于限制细胞溶质细菌。
    Peroxisomes are organelles involved in many metabolic processes including lipid metabolism, reactive oxygen species (ROS) turnover, and antimicrobial immune responses. However, the cellular mechanisms by which peroxisomes contribute to bacterial elimination in macrophages remain elusive. Here, we investigated peroxisome function in iPSC-derived human macrophages (iPSDM) during infection with Mycobacterium tuberculosis (Mtb). We discovered that Mtb-triggered peroxisome biogenesis requires the ESX-1 type 7 secretion system, critical for cytosolic access. iPSDM lacking peroxisomes were permissive to Mtb wild-type (WT) replication but were able to restrict an Mtb mutant missing functional ESX-1, suggesting a role for peroxisomes in the control of cytosolic but not phagosomal Mtb. Using genetically encoded localization-dependent ROS probes, we found peroxisomes increased ROS levels during Mtb WT infection. Thus, human macrophages respond to the infection by increasing peroxisomes that generate ROS primarily to restrict cytosolic Mtb. Our data uncover a peroxisome-controlled, ROS-mediated mechanism that contributes to the restriction of cytosolic bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    GBS可能在新生儿中引起毁灭性疾病。在新生儿的早发性疾病中,细菌是在分娩过程中从定植的母亲获得的。我们表征了VII型分泌系统(T7SS),输出WXG100超家族的小蛋白,在B组中,从妊娠定植妇女和早发性疾病(EOD)新生儿中分离出链球菌(GBS),以更好地了解T7SS在这些不同临床情景中对毒力的贡献。
    分析GBS基因组[N=33,17个EOD分离株(血清型III/ST17)和16个定殖分离株(12个血清型VI/ST1,一个血清型VI/ST19,一个血清型VI/ST6,和两个血清型3/ST19)]中T7SS基因和编码WXG100蛋白的基因的存在。我们还进行生物信息学分析。巨形球菌幼虫用于比较定殖之间的毒力,EOD,和突变的EOD分离株。EOD分离号118659(III/ST17)用于敲除编码膜结合ATP酶的essC基因,考虑到T7SS的驱动程序。
    大多数GBST7SS基因座编码的核心成分基因:essC,膜包埋蛋白(essA;essB),T7SS活动的调节剂(esaA;esaB;esaC)和效应子:[esxA(SAG1039);esxB(SAG1030)]。生物信息学分析表明,基于序列类型(ST),临床GBS分离株编码至少三种不同的T7SS机制亚型。在所有ST1分离物中,我们鉴定了两个拷贝的esxA基因(编码推定的WXG100蛋白),只有23.5%的ST17分离株携带esxA基因。五个ST17分离株编码两个拷贝的essC基因。孤立WXG100分子(SAG0230),与T7SS基因座不同,在所有测试菌株中发现,除了在ST17菌株中,仅在23.5%的分离株中发现了基因座。在ST6和ST19分离株中,大多数结构T7SS基因缺失。与定殖分离株相比,EOD分离株在G.melonella模型中表现出增强的毒力。118659DessC菌株的技能能力减弱,幼虫更有效地根除118659DessC。
    我们证明了T7SS在感染过程中起作用。敲出essC基因,考虑到T7SS的驱动程序,降低了负责EOD的ST17的毒力,导致它们的毒性低于定殖分离株中观察到的毒性。
    GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios.
    GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS.
    Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC.
    We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号