Terahertz spectra

  • 文章类型: Journal Article
    太赫兹(THz)振动模式在生物系统中的微观起源是当前研究的活跃和开放领域。最近的实验[PhysRevX.8,031061(2018)]揭示了在光泵浦诱导的非平衡条件下,荧光团修饰的牛血清白蛋白(BSA)蛋白在水溶液中存在〜0.3THz的明显模式。该结果被启发式地解释为源于低频声子模式激活的集体弹性波动。在这项工作中,我们表明,亚太赫兹光谱响应出现在统计上显著的方式(>2σ)从这样的集体行为,说明光激发如何改变特定的THz振动模式。我们通过概念验证分子动力学重新审视理论分析,将光学激发引入模拟。利用信息论技术,我们表明,这些激发可以引起涉及两个光激发发色团(色氨酸)的多尺度响应,蛋白质中的其他氨基酸,离子,和水。我们的结果激发了新的实验和完全非平衡模拟来探测这些现象,以及Fröhlich凝析油原子模型的完善,这些模型基本上由生物学中的非线性相互作用决定。
    The microscopic origins of terahertz (THz) vibrational modes in biological systems are an active and open area of current research. Recent experiments [Phys Rev X. 8, 031061 (2018)] have revealed the presence of a pronounced mode at ∼0.3 THz in fluorophore-decorated bovine serum albumin (BSA) protein in aqueous solution under nonequilibrium conditions induced by optical pumping. This result was heuristically interpreted as a collective elastic fluctuation originating from the activation of a low-frequency phonon mode. In this work, we show that the sub-THz spectroscopic response emerges in a statistically significant manner (>2σ) from such collective behavior, illustrating how photoexcitation can alter specific THz vibrational modes. We revisit the theoretical analysis with proof-of-concept molecular dynamics that introduce optical excitations into the simulations. Using information theory techniques, we show that these excitations can give rise to a multiscale response involving two optically excited chromophores (tryptophans), other amino acids in the protein, ions, and water. Our results motivate new experiments and fully nonequilibrium simulations to probe these phenomena, as well as the refinement of atomistic models of Fröhlich condensates that are fundamentally determined by nonlinear interactions in biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Terahertz spectral features of alkali halide crystals were studied with the combination of broadband terahertz time-domain spectroscopy and the solid-state-based density functional theory calculations. To understand the particular modes of the observed terahertz features of the alkali halide crystals, the resonant modes of KCl and CsCl were analyzed using face-centered cubic and body-centered cubic lattice models, respectively. The results show that the characteristic terahertz absorption peaks could be assigned to the lattice vibration of the ionic crystals. Furthermore, the terahertz responses of a series of alkali halides were recorded, and obvious absorption peaks were observed in each salt in the frequency region below 8.5 THz. What is more interestingly is that the frequencies of these observed peaks are red-shifted with the increases of the mass and radius of the ions. This correlation between the resonant frequency of the lattice vibration, the reduced atomic mass, and the equilibrium distance between the ions agrees well with the harmonic oscillator model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    As the building blocks of proteins, amino acids serve vital metabolic functions in addition to protein synthesis and thus attract enormous interest. Here we reported the far-infrared optical properties of L-cysteine (Lcys) and its hydrochloride monohydrate (LCHM) characterized by terahertz time-domain spectroscopy. The Lcys and LCHM exhibit quite distinct characteristics in the terahertz region due to diverse collective vibrations of the molecules, which is further confirmed by the solid-state density functional theory (DFT) calculations. The presented studies indicate that the intermolecular hydrogen bonds play a critical role in the far-infrared terahertz response of Lcys and LCHM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号