Sprouty

Sprouty
  • 文章类型: Journal Article
    眼睛的发育和生长取决于正常的晶状体形态发生及其生长。这种增长,反过来,依赖于晶状体上皮细胞的协调增殖及其随后分化成成纤维细胞。这些细胞过程受到严格的调节,以保持晶状体的精确细胞结构和大小,对其透明度和折射性能至关重要。据报道,由ERK1/2驱动的生长因子介导的MAPK信号传导对于调节晶状体的细胞过程至关重要,ERK1/2信号受到内源性拮抗剂的严格调节,包括Sprouty和相关的Spred家族的成员。我们先前的研究已经证明了这两种抑制分子在晶状体和眼睛发育中的重要性。在这项研究中,我们在这些发现的基础上强调了Spreds通过调节ERK1/2介导的晶状体上皮细胞增殖和纤维分化来调节早期晶状体形态发生的重要性。早期晶状体形态发生中Spred1和Spred2的条件丢失导致ERK1/2磷酸化升高,晶状体上皮过度增生,以及纤维分化率的相关增加。这导致了短暂的microphakia和小眼症,它消失了,由于潜在的补偿性发芽表达。我们的数据支持Spreds在晶状体形态发生的早期阶段的重要时间作用,并强调ERK1/2信号的负调节对于维持晶状体增殖和纤维分化至关重要。
    The development and growth of the eye depends on normal lens morphogenesis and its growth. This growth, in turn, is dependent on coordinated proliferation of the lens epithelial cells and their subsequent differentiation into fiber cells. These cellular processes are tightly regulated to maintain the precise cellular structure and size of the lens, critical for its transparency and refractive properties. Growth factor-mediated MAPK signaling driven by ERK1/2 has been reported as essential for regulating cellular processes of the lens, with ERK1/2 signaling tightly regulated by endogenous antagonists, including members of the Sprouty and related Spred families. Our previous studies have demonstrated the importance of both these inhibitory molecules in lens and eye development. In this study, we build on these findings to highlight the importance of Spreds in regulating early lens morphogenesis by modulating ERK1/2-mediated lens epithelial cell proliferation and fiber differentiation. Conditional loss of both Spred1 and Spred2 in early lens morphogenesis results in elevated ERK1/2 phosphorylation, hyperproliferation of lens epithelia, and an associated increase in the rate of fiber differentiation. This results in transient microphakia and microphthalmia, which disappears, owing potentially to compensatory Sprouty expression. Our data support an important temporal role for Spreds in the early stages of lens morphogenesis and highlight how negative regulation of ERK1/2 signaling is critical for maintaining lens proliferation and fiber differentiation in situ throughout life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SPRED蛋白在信号传导中的作用,发展,和癌症越来越被认可。SPRED蛋白包含一个N端EVH-1结构域,一个中央c-Kit结合域,和C端SROUTY域。它们负调节从酪氨酸激酶到Ras-MAPK途径的信号传导。SPRED1直接与c-KIT和RasGAP结合,神经纤维蛋白,其功能完全依赖于这种相互作用。SPRED1的功能缺失突变发生在人类癌症中,并导致发育障碍,Legius综合征.小鼠中SPRED基因的遗传消融导致行为问题,侏儒症,和多种其他表型,包括白血病风险增加。在这次审查中,我们总结和讨论生化,结构,以及这些蛋白质的生物学功能,包括它们在正常细胞生长和分化以及人类疾病中的作用。
    The roles of SPRED proteins in signaling, development, and cancer are becoming increasingly recognized. SPRED proteins comprise an N-terminal EVH-1 domain, a central c-Kit-binding domain, and C-terminal SROUTY domain. They negatively regulate signaling from tyrosine kinases to the Ras-MAPK pathway. SPRED1 binds directly to both c-KIT and to the RasGAP, neurofibromin, whose function is completely dependent on this interaction. Loss-of-function mutations in SPRED1 occur in human cancers and cause the developmental disorder, Legius syndrome. Genetic ablation of SPRED genes in mice leads to behavioral problems, dwarfism, and multiple other phenotypes including increased risk of leukemia. In this review, we summarize and discuss biochemical, structural, and biological functions of these proteins including their roles in normal cell growth and differentiation and in human disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sprouty (SPRY) proteins play critical roles in controlling cell proliferation, differentiation, and survival by inhibiting receptor tyrosine kinase (RTK)-mediated extracellular signal-regulated kinase (ERK) signaling. Recent studies have demonstrated that SPRY4 negatively regulates angiogenesis and tumor growth. However, whether SPRY4 regulates osteogenic and/or adipogenic differentiation of mesenchymal stem cells remains to be explored.
    In this study, we investigated the expression pattern of Spry4 and found that its expression was regulated during the differentiation of mouse marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. In vitro loss-of-function and gain-of-function studies demonstrated that SPRY4 inhibited osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. In vivo experiments showed that silencing of Spry4 in the marrow of C57BL/6 mice blocked fat accumulation and promoted osteoblast differentiation in ovariectomized mice. Mechanistic investigations revealed the inhibitory effect of SPRY4 on canonical wingless-type MMTV integration site (Wnt) signaling and ERK pathway. ERK1/2 was shown to interact with low-density lipoprotein receptor-related protein 6 (LRP6) and activate the canonical Wnt signaling pathway. Inactivation of Wnt signaling attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by Spry4 small interfering RNA (siRNA). Finally, promoter study revealed that β-catenin transcriptionally inhibited the expression of Spry4.
    Our study for the first time suggests that a novel SPRY4-ERK1/2-Wnt/β-catenin regulatory loop exists in marrow stromal progenitor cells and plays a key role in cell fate determination. It also highlights the potential of SPRY4 as a novel therapeutic target for the treatment of metabolic bone disorders such as osteoporosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Understanding the fundamental role of the stroma in normal development and cancer progression has been an emerging focus in recent years. The receptor tyrosine kinase (RTK) signaling pathway has been reported playing critical roles in regulating the normal and cancer microenvironment, but the underlying mechanism is still not very clear. By applying the quantitative phosphoproteomic analysis of Sprouty proteins (SPRYs), generic modulators of RTK signaling and deleted mouse mammary fibroblasts, we quantified a total of 11,215 unique phosphorylation sites. By contrast, 554 phosphorylation sites on 425 proteins had SPRY-responsive perturbations. Of these, 554 phosphosites, 362 sites on 277 proteins, were significantly increased, whereas 192 sites on 167 proteins were decreased. Among the regulated proteins, we identified 31 kinases, 7 phosphatases, and one phosphatase inhibitor that were not systematically characterized before. Furthermore, we reconstructed a phosphorylation network centered on RTK signaling regulated by SPRY. Collectively, this study uncovered a system-wide phosphorylation network regulated by SPRY, providing an additional insight into the complicated RTK signaling pathways involved in the mammary gland microenvironment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Peripherally projecting neurons undergo significant morphological changes during development and regeneration. This neuroplasticity is controlled by growth factors, which bind specific membrane bound kinase receptors that in turn activate two major intracellular signal transduction cascades. Besides the PI3 kinase/AKT pathway, activated extracellular signal-regulated kinase (ERK) plays a key role in regulating the mode and speed of peripheral axon outgrowth in the adult stage. Cell culture studies and animal models revealed that ERK signaling is mainly involved in elongative axon growth in vitro and long-distance nerve regeneration in vivo. Here, we review ERK dependent morphological plasticity in adult peripheral neurons and evaluate the therapeutic potential of interfering with regulators of ERK signaling to promote nerve regeneration. Anat Rec, 302:1261-1267, 2019. © 2019 Wiley Periodicals, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Fibroblast growth factor receptor 2 (FGFR2) was demonstrated to correlate to the progression and prognosis of intrahepatic cholangiocarcinoma (ICC) by numerous evidences. However, as a well-recognized suppressor of FGFR2 signalling, the clinical significance of Sprouty (SPRY) family of ICC has not been investigated. In our study, the expressions of SPRY1-4 in 20 pairs of fresh tumour tissues were detected with qPCR, and in 108 cases of paraffin-embedded tissues with immunohistochemistry. The prognostic value of SPRY family in ICC was estimated with univariate analysis and multivariate analysis. As a result, SPRY2 was identified as an independent prognostic biomarker predicting favourable prognosis of ICC. High SPRY2 expression was correlated with good differentiation of ICC. With silencing SPRY2 expression, we demonstrated that SPRY2 could suppress FGFR2-induced ERK phosphorylation, migration, invasion and epithelial-mesenchymal transition (EMT) under FGF1 stimulation. By overexpressing SPRY2-wide type or SPRY2-Y55F, the tyrosine-55 of SPRY2 was demonstrated to be essential in suppressing ERK phosphorylation, tumour invasion and EMT of ICC cells. In conclusion, SPRY2 was correlated with favourable prognosis of ICC via suppressing FGFR2-induced ERK phosphorylation, invasion and EMT. The phosphorylation of SPRY2-Y55 was required in this tumour-suppressing function of SPRY2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号