Pollutant fate

  • 文章类型: Journal Article
    在温带环境中,气候变化可能通过诱导CaSO4溶解增强,然后生物硫酸盐还原来影响水的pH值,由于H+消耗,具有碱化水的潜力。同时,大气二氧化碳的增加可能会增强碳酸盐岩的风化(例如,白云石)并增加溶解碳酸盐物种的总浓度。这两个过程都通过碳酸酯自由基(CO3·-)增强了光转化,如非甾体抗炎药扑热息痛所示,前提是水的溶解有机碳不会发生重大波动。气候变化也会影响水文,长期干旱可能会大大降低河流的流速。这是一个实质性的问题,因为废水污染物变得不那么稀释,因此,由于浓度增加,可能会产生更多的有害影响。同时,在低流量条件下,水也更浅,其流速降低。光化学反应变得更快,因为浅水被阳光有效地照亮,它们也有更多的时间发生,因为水需要更长的时间来覆盖同一条河流。因此,污染物的光降解增强,这抵消了较低的稀释,但只能在离废水出口足够远的地方;这是因为光反应需要时间(转化为流动河流的空间)来减轻污染。
    In temperate environments, climate change could affect water pH by inducing enhanced dissolution of CaSO4 followed by biological sulphate reduction, with the potential to basify water due to H+ consumption. At the same time, increased atmospheric CO2 could enhance weathering of carbonate rocks (e.g., dolomite) and increase the total concentration of dissolved carbonate species. Both processes enhance phototransformation by the carbonate radical (CO3•-), as shown for the non-steroidal anti-inflammatory drug paracetamol, provided that the dissolved organic carbon of water does not undergo important fluctuations. Climate change could also affect hydrology, and prolonged drought periods might considerably decrease flow rates in rivers. This is a substantial problem because wastewater pollutants become less diluted and, as a result, can exert more harmful effects due to increased concentrations. At the same time, in low-flow conditions, water is also shallower and its flow velocity is decreased. Photochemical reactions become faster because shallow water is efficiently illuminated by sunlight, and they also have more time to occur because water takes longer to cover the same river stretch. As a result, photodegradation of contaminants is enhanced, which offsets lower dilution but only at a sufficient distance from the wastewater outlet; this is because photoreactions need time (which translates into space for a flowing river) to attenuate pollution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The important effect of soil wetting and drying cycle (WDC) on soil structure, and the consequent effect on pollutant fate is underexplored. We thoroughly investigated the changes in soil structure and in leaching of Alion (indaziflam) and Express (tribenuron methyl), pre and post WDC, from two clayey soils and two loamy soils under different land uses (uncultivated, field crops, and orchards). Soil stability was quantified by an aggregate durability index we recently developed. WDC did not affect the stability of the sandy-loam soils, as expected. However, for the sandy-clay-loam with high CaCO3 content aggregation was observed. For the clayey soils with similar CaCO3, aggregation and disaggregation were obtained, for a soil with relatively low and high SOM, respectively. The stability trends are reflected by the ratio between the contents of inorganic carbon and soil organic matter (SOM), CaCO3/SOM, normalized to the clay content. Aggregation was explained by CaCO3 cementation, while disaggregation was attributed to high clay content and to alterations in SOM conformation post WDC. These opposite trends, obtained for the two clayey soils, were confirmed by analyzing changes in soil packing employing X-ray tomography (micro-CT). Our results clearly demonstrated that soil aggregation and disaggregation, induced by a WDC, suppresses and enhances herbicide mobility, respectively. However, the effect of WDC on herbicide leaching was not noticeable for Alion upon its high adsorption to a clayey soil, indicating that herbicide physical-chemical properties may dominate. Finally, WDC induces micron-scale changes in aggregate structure, which have a notable effect on pollutant mobility and fate in the environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The APEX (aqueous photochemistry of environmentally occurring xenobiotics) software computes the phototransformation kinetics of compounds that occur in sunlit surface waters. It is free software based on Octave, and was originally released in 2014. Since then, APEX has proven to be a remarkably flexible platform, allowing for the addressing of several environmental problems. However, considering APEX as a stand-alone software is not conducive to exploiting its full potentialities. Rather, it is part of a whole ecosystem that encompasses both the software and the laboratory protocols that allow for the measurement of substrate photoreactivity parameters. Coherently with this viewpoint, the present paper shows both how to use APEX, and how to experimentally derive or approximately assess the needed input data. Attention is also given to some issues that might provide obstacles to users, including the extension of APEX beyond the simple systems for which it was initially conceived. In particular, we show how to use APEX to deal with compounds that undergo acid-base equilibria, and with the photochemistry of systems such as stratified lakes, lakes undergoing evaporation, and rivers. Hopefully, this work will provide a reference for the smooth use of one of the most powerful instruments for the modeling of photochemical processes in freshwater environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号