Nerve Degeneration

神经退化
  • 文章类型: Journal Article
    背景:血管失调是青光眼的主要危险因素之一,内皮素-1(ET-1)可能在血管性青光眼的发病机制中起作用。枸杞果实提取物(LB)在各种动物模型中表现出抗衰老和保护视网膜神经节细胞(RGC)的多靶点机制。探讨LB糖蛋白(LbGP)在ET-1诱导的RGC变性中的疗效,在预处理和后处理条件下将LbGP应用于ET-1小鼠模型。使用基于临床的技术表征视网膜结构和功能结果。
    方法:将成年C57BL/6小鼠随机分为四个实验组,即车辆控制(n=9),LbGP预处理(n=8),LbGP-后处理(第1天)(n=8)和LbGP-后处理(第5天)(n=7)。每天一次口服施用lmg/Kg的LbGP或用于载体对照的PBS。治疗前和治疗后(第1天或第5天)在玻璃体内注射前1周和后1或5天开始,分别,并持续到注射后第28天。使用光学相干断层扫描(OCT)评估治疗对视网膜结构和功能的影响,基线时多普勒OCT和视网膜电图测量,注射后第10天和第28天。通过在视网膜整体上使用RBPMS免疫染色来评估RGC存活。
    结果:在媒介物对照中注射ET-1引起动脉流量和视网膜功能的短暂减少,在第28天导致显著的RNFL变薄和RGC损失。尽管在所有LbGP组中ET-1引起血流或视网膜功能的短暂丧失,与载体对照相比,LbGP治疗促进更好地恢复视网膜血流和视网膜功能。此外,所有三个LbGP治疗组(即从第1天或第5天的治疗前和治疗后)均显著保留了RNFL厚度和RGC密度。在三个LbGP治疗组之间没有观察到保护作用的显著差异。
    结论:LbGP在ET-1诱导的RGC变性小鼠模型中显示出神经保护作用,将治疗作为预处理,立即或延迟后治疗。LbGP治疗促进了视网膜血流的更好恢复,并保护了RNFL,RGC密度和视网膜功能。这项研究显示了LB作为青光眼治疗的补充治疗的转化潜力。
    BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques.
    METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts.
    RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups.
    CONCLUSIONS: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:肌萎缩侧索硬化症(ALS)的特征是进行性运动神经元(MN)变性,导致神经肌肉接头(NMJ)拆除和严重的肌肉萎缩。核受体相互作用蛋白(NRIP)作为多功能蛋白发挥作用。它直接与钙调蛋白或α-肌动蛋白2相互作用,充当肌肉收缩和维持肌节完整性的钙传感器。此外,NRIP与乙酰胆碱受体(AChR)结合以稳定NMJ。肌肉中NRIP的丢失导致进行性运动神经元变性,NMJ结构异常,类似ALS表型。因此,我们假设NRIP可能是ALS的治疗因素.
    方法:我们使用SOD1G93A小鼠,表达具有ALS连锁G93A突变的人SOD1,作为ALS模型。产生编码人NRIP基因(AAV-NRIP)的腺相关病毒载体,并将其注射到60日龄的SOD1G93A小鼠的肌肉中,在疾病发作之前。测量病理和行为变化以评估AAV-NRIP对SOD1G93A小鼠的疾病进展的治疗效果。
    结果:SOD1G93A小鼠在脊髓和骨骼肌组织中的NRIP表达均低于野生型小鼠。在骨骼肌中观察到通过AAV-NRIP肌内注射的强制NRIP表达并逆行转导到脊髓中。AAV-NRIP基因治疗提高了SOD1G93A小鼠的运动距离和饲养频率。此外,AAV-NRIP增加肌纤维大小和肌球蛋白表达缓慢,改善NMJ变性和轴突终末神经支配,并增加SOD1G93A小鼠的α运动神经元(α-MNs)和复合肌肉动作电位(CMAP)的数量。
    结论:AAV-NRIP基因治疗可改善肌肉萎缩,运动神经元变性,NMJ的轴突末端神经支配,导致SOD1G93A小鼠NMJ传递增加和运动功能改善。总的来说,AAV-NRIP可能是ALS的潜在治疗药物。
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS.
    METHODS: We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice.
    RESULTS: SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice.
    CONCLUSIONS: AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背侧开关蛋白1(DSP1),HMGB1的哺乳动物同系物,在1994年首先被鉴定为背侧共阻遏物。DSP1包含HMG-box结构域,并在果蝇中充当转录调节因子。它在胚胎发育中起着至关重要的作用,特别是在早期胚胎发生过程中的背腹侧模式,通过基因表达的调控。此外,DSP1涉及各种细胞过程,包括细胞命运决定和组织分化,对胚胎发育至关重要。虽然DSP1在胚胎发育中的功能已经得到了相对充分的研究,它在成年果蝇大脑中的作用尚不清楚。在这项研究中,我们通过使用神经元特异性DSP1过表达果蝇研究了DSP1在大脑中的作用。我们观察到DSP1过表达的果蝇的攀爬能力和寿命降低。此外,这些苍蝇表现出神经肌肉接头(NMJ)缺陷,减小的眼睛大小和酪氨酸羟化酶(TH)阳性神经元的减少,表明DSP1过表达诱导的神经元毒性。我们的数据表明,DSP1过表达导致神经元功能障碍和毒性,将DSP1定位为神经退行性疾病的潜在治疗靶点。
    Dorsal switch protein 1(DSP1), a mammalian homolog of HMGB1, is firstly identified as a dorsal co-repressor in 1994. DSP1 contains HMG-box domain and functions as a transcriptional regulator in Drosophila melanogaster. It plays a crucial role in embryonic development, particularly in dorsal-ventral patterning during early embryogenesis, through the regulation of gene expression. Moreover, DSP1 is implicated in various cellular processes, including cell fate determination and tissue differentiation, which are essential for embryonic development. While the function of DSP1 in embryonic development has been relatively well-studied, its role in the adult Drosophila brain remains less understood. In this study, we investigated the role of DSP1 in the brain by using neuronal-specific DSP1 overexpression flies. We observed that climbing ability and life span are decreased in DSP1-overexpressed flies. Furthermore, these flies demonstrated neuromuscular junction (NMJ) defect, reduced eye size and a decrease in tyrosine hydroxylase (TH)-positive neurons, indicating neuronal toxicity induced by DSP1 overexpression. Our data suggest that DSP1 overexpression leads to neuronal dysfunction and toxicity, positioning DSP1 as a potential therapeutic target for neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    治疗特发性帕金森病的最大问题之一是缺乏减缓其进展的新药。左旋多巴仍然是治疗这种疾病的明星药物,虽然会引起严重的副作用.新药临床研究的失败取决于基于神经毒素的临床前模型的使用,这些神经毒素不代表疾病中发生的事情,因为它们引起快速和扩张性的神经变性。我们最近提出了一种特发性帕金森病的单神经元变性模型,该模型需要数年才能积累足够的神经元,以使运动症状发作。这种单神经元变性模型是基于神经黑色素合成过程中氨基色素的过度形成,超过了DT-心肌黄递酶和谷胱甘肽转移酶M2-2的神经保护作用,从而阻止了氨基色素的神经毒性作用。虽然氨基色素的神经毒性作用没有膨胀作用,这种内源性神经毒素的立体定向注射不能用于在动物中产生临床前模型。因此,这篇综述的目的是评估药理学上增加DT心肌黄递酶和GSTM2-2表达的策略,以及诱导囊泡单胺转运蛋白2表达的分子,如普拉克索.
    One of the biggest problems in the treatment of idiopathic Parkinson\'s disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson\'s disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌萎缩侧索硬化(ALS)是一种以中枢神经系统运动神经元变性为特征的致命性神经退行性疾病。最近的研究越来越多地将核苷酸寡聚化结构域样受体蛋白3(NLRP3)炎性体的激活与ALS发病机理联系起来。NLRP3激活触发Caspase1(CASP1)自动激活,导致GasderminD(GSDMD)的裂解和细胞膜上的孔形成。该过程促进细胞因子分泌并最终导致焦转细胞死亡。突出了ALS中炎症和神经变性的复杂相互作用。这项研究旨在使用摇摆小鼠作为ALS动物模型来表征NLRP3炎性体成分及其与细胞标记物的共定位。首先,我们检查了miR-223-3p的水平,因为它与NLRP3炎性体活性相关.摇摆小鼠显示在腹角中miR-223-3p的表达增加,脊髓,和小脑组织.接下来,NLRP3,pro-CASP1,cleavedCASP1(c-CASP1),全长GSDMD,裂开的GDSMD显示摆动脊髓中的NLRP3炎性体激活,但不在小脑.此外,我们研究了上述蛋白质与神经元的共定位,小胶质细胞,和脊髓组织中的星形胶质细胞标记。显然,摇摆小鼠表现出小胶质细胞增生,星形胶质增生,和这个组织中的运动神经元变性。此外,我们显示了神经元中蛋白质水平的上调和NLRP3,c-CASP1和GSDMD的共定位,以及小胶质细胞和星形胶质细胞。总的来说,这项研究证明了NLRP3炎性体激活和焦化性细胞死亡参与了摇摆小鼠的脊髓组织,这可能进一步加剧该ALS小鼠模型的运动神经元变性和神经炎症。
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the central nervous system. Recent research has increasingly linked the activation of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome to ALS pathogenesis. NLRP3 activation triggers Caspase 1 (CASP 1) auto-activation, leading to the cleavage of Gasdermin D (GSDMD) and pore formation on the cellular membrane. This process facilitates cytokine secretion and ultimately results in pyroptotic cell death, highlighting the complex interplay of inflammation and neurodegeneration in ALS. This study aimed to characterize the NLRP3 inflammasome components and their colocalization with cellular markers using the wobbler mouse as an ALS animal model. Firstly, we checked the levels of miR-223-3p because of its association with NLRP3 inflammasome activity. The wobbler mice showed an increased expression of miR-223-3p in the ventral horn, spinal cord, and cerebellum tissues. Next, increased levels of NLRP3, pro-CASP 1, cleaved CASP 1 (c-CASP 1), full-length GSDMD, and cleaved GDSMD revealed NLRP3 inflammasome activation in wobbler spinal cords, but not in the cerebellum. Furthermore, we investigated the colocalization of the aforementioned proteins with neurons, microglia, and astrocyte markers in the spinal cord tissue. Evidently, the wobbler mice displayed microgliosis, astrogliosis, and motor neuron degeneration in this tissue. Additionally, we showed the upregulation of protein levels and the colocalization of NLRP3, c-CASP1, and GSDMD in neurons, as well as in microglia and astrocytes. Overall, this study demonstrated the involvement of NLRP3 inflammasome activation and pyroptotic cell death in the spinal cord tissue of wobbler mice, which could further exacerbate the motor neuron degeneration and neuroinflammation in this ALS mouse model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体分布的变化是许多与年龄相关的神经退行性疾病的特征。在果蝇中,降低Cdk5的活性会导致神经变性表型,并且已知会影响几种线粒体特性。因此,我们研究了线粒体分布的改变是否与Cdk5相关的神经变性有关。我们发现,降低Cdk5活性不会改变线粒体定位的平衡蘑菇体的轴突神经元区室,果蝇大脑的学习和记忆中心。我们有,然而,观察轴突初始段(AIS)线粒体分布的变化,位于近端轴突的神经元区室,参与神经元极化和动作电位的启动。具体来说,我们观察到线粒体在野生型神经元中被部分排除在AIS之外,但是这种排除在Cdk5活性降低后就消失了,伴随着已知在这种情况下发生的AIS域的收缩。这种线粒体重新分布到AIS中不可能是由于AIS结构域本身的缩短,而是由于Cdk5活性的改变。此外,在Cdk5活性降低的情况下,线粒体再分布到AIS中不太可能是神经变性的早期驱动因素。
    Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌萎缩侧索硬化(ALS)是一种神经退行性疾病,其特征在于与退化的脑外神经元/Betz细胞(ETN)相关的运动功能的进行性丧失。这些神经元受到选择性影响的原因尚不清楚。这里,为了了解可能使ETN对ALS敏感的独特分子特性,我们对来自患者和对照组的79,169个单个细胞核进行了RNA测序.在患者和未受影响的个体中,我们发现ALS风险基因在THY1+ETN中的表达明显更高,不管诊断。在患者中,这伴随着与蛋白质稳态和应激反应相关的基因的诱导,这些基因在广泛的ETN中被显著诱导.检查少突胶质细胞和小胶质细胞核显示患者特异性下调少突胶质细胞中的髓鞘化基因,并上调小胶质细胞中的内溶酶体反应状态。我们的发现表明,脑外神经元的选择性脆弱性部分与其固有的分子特性有关,从而使它们对遗传学和变性机制敏感。
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by a progressive loss of motor function linked to degenerating extratelencephalic neurons/Betz cells (ETNs). The reasons why these neurons are selectively affected remain unclear. Here, to understand the unique molecular properties that may sensitize ETNs to ALS, we performed RNA sequencing of 79,169 single nuclei from cortices of patients and controls. In both patients and unaffected individuals, we found significantly higher expression of ALS risk genes in THY1+ ETNs, regardless of diagnosis. In patients, this was accompanied by the induction of genes involved in protein homeostasis and stress responses that were significantly induced in a wide collection of ETNs. Examination of oligodendroglial and microglial nuclei revealed patient-specific downregulation of myelinating genes in oligodendrocytes and upregulation of an endolysosomal reactive state in microglia. Our findings suggest that selective vulnerability of extratelencephalic neurons is partly connected to their intrinsic molecular properties sensitizing them to genetics and mechanisms of degeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然凋亡,焦亡,铁性凋亡与AD有关,没有完全解释在AD脑中观察到的广泛的神经元丢失。最近的证据表明,坏死性凋亡在AD中很丰富,坏死与Tau病理学的出现密切相关,并且坏死标记物积聚在颗粒液泡神经变性囊泡(GVD)中。我们在这里回顾了颗粒液泡介导的神经元坏死途径的神经元特异性激活,该通路上游的潜在AD相关触发因素,以及坏死体与内溶酶体途径的相互作用,可能提供与Tau病理学的联系.此外,我们强调了抑制神经退行性疾病如AD的坏死的治疗潜力,因为这为针对神经元丢失以保持认知能力的药物开发提供了新的途径。当与降低淀粉样蛋白的药物组合时,这种方法似乎特别相关。
    Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    慢性睡眠中断(CSD)由于睡眠不足或零散,是阿尔茨海默病(AD)的重要危险因素。潜在机制,然而,不理解。小鼠的CSD导致蓝斑神经元(LCn)和CA1海马神经元变性,并增加海马淀粉样β42(Aβ42),内嗅皮层(EC)tau磷酸化(p-tau)和神经胶质反应性。LCn损伤越来越多地参与AD的发病机制。CSD增加了LCn的NE营业额,和LCN去甲肾上腺素(NE)代谢激活天冬酰胺内肽酶(AEP),一种已知将淀粉样蛋白前体蛋白(APP)和tau切割成神经毒性片段的酶。我们假设CSD会以NE依赖性方式激活LCnAEP,以诱导LCn和海马损伤。这里,我们研究了LCN,缺乏NE(多巴胺β-羟化酶(Dbh)-/-)的小鼠和对照雄性和雌性小鼠对CSD的海马和EC反应,使用慢性睡眠破碎(CFS)模型。Dbh-/-和对照雄性和雌性小鼠的睡眠同样破碎,然而,只有Dbh-/-小鼠对LCn的CFS丧失具有抗性,LCNp-tau,和LCnAEP上调和激活,如通过AEP切割的APP和tau片段的增加所证明的。缺乏NE也可以防止海马AEP-APP和Aβ42的CFS增加,但不能防止EC中CFS增加的AEP-tau和p-tau。总的来说,这项工作证明了CFS激活AEP,确立了NE在LCn神经元的CFS变性和CFS促进前脑Aβ积累中的关键作用,因此,确定CSD和特定AD神经损伤之间的关键分子联系。睡眠中断通常发生并增加AD的风险,然而,分子机制尚不清楚。LCn为大部分大脑提供NE,其中NE主要具有神经保护作用。然而,LCn中NE的代谢可促进与AD神经损伤有关的致病性淀粉样蛋白和tau片段的形成。这里,我们发现睡眠中断增加了LCn中有毒淀粉样蛋白和tau片段的形成,而NE驱动了这些片段的形成,LCn丢失和海马淀粉样β积累。这项工作确定了与迟发性或自发性AD有关的睡眠损失神经损伤的分子窗口。
    Chronic sleep disruption (CSD), from insufficient or fragmented sleep and is an important risk factor for Alzheimer\'s disease (AD). Underlying mechanisms are not understood. CSD in mice results in degeneration of locus ceruleus neurons (LCn) and CA1 hippocampal neurons and increases hippocampal amyloid-β42 (Aβ42), entorhinal cortex (EC) tau phosphorylation (p-tau), and glial reactivity. LCn injury is increasingly implicated in AD pathogenesis. CSD increases NE turnover in LCn, and LCn norepinephrine (NE) metabolism activates asparagine endopeptidase (AEP), an enzyme known to cleave amyloid precursor protein (APP) and tau into neurotoxic fragments. We hypothesized that CSD would activate LCn AEP in an NE-dependent manner to induce LCn and hippocampal injury. Here, we studied LCn, hippocampal, and EC responses to CSD in mice deficient in NE [dopamine β-hydroxylase (Dbh)-/-] and control male and female mice, using a model of chronic fragmentation of sleep (CFS). Sleep was equally fragmented in Dbh -/- and control male and female mice, yet only Dbh -/- mice conferred resistance to CFS loss of LCn, LCn p-tau, and LCn AEP upregulation and activation as evidenced by an increase in AEP-cleaved APP and tau fragments. Absence of NE also prevented a CFS increase in hippocampal AEP-APP and Aβ42 but did not prevent CFS-increased AEP-tau and p-tau in the EC. Collectively, this work demonstrates AEP activation by CFS, establishes key roles for NE in both CFS degeneration of LCn neurons and CFS promotion of forebrain Aβ accumulation, and, thereby, identifies a key molecular link between CSD and specific AD neural injuries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌萎缩侧索硬化(ALS)的特征在于躯体运动神经元的进行性丧失。一个主要的焦点是运动神经元的内在特性,作为退化的原因,虽然对脊髓中间神经元的贡献关注较少。在目前的工作中,我们在SOD1G93A小鼠模型中应用了转录本的多重检测和基于机器学习的图像分析来研究ALS进展过程中多个脊髓中间神经元群体的命运.分析表明,脊髓抑制性中间神经元在疾病早期受到影响,在运动神经元死亡之前,以缓慢进行性退化为特征,而兴奋性中间神经元后来受到影响,进展迅速。此外,我们报告了抑制性和兴奋性亚群中的差异脆弱性。我们的研究揭示了中间神经元特异性变性与ALS发育的强烈参与。这些观察结果指出,最终可能决定运动神经元变性的各种脊髓神经元回路的不同参与。
    Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of somatic motor neurons. A major focus has been directed to motor neuron intrinsic properties as a cause for degeneration, while less attention has been given to the contribution of spinal interneurons. In the present work, we applied multiplexing detection of transcripts and machine learning-based image analysis to investigate the fate of multiple spinal interneuron populations during ALS progression in the SOD1G93A mouse model. The analysis showed that spinal inhibitory interneurons are affected early in the disease, before motor neuron death, and are characterized by a slow progressive degeneration, while excitatory interneurons are affected later with a steep progression. Moreover, we report differential vulnerability within inhibitory and excitatory subpopulations. Our study reveals a strong interneuron involvement in ALS development with interneuron specific degeneration. These observations point to differential involvement of diverse spinal neuronal circuits that eventually may be determining motor neuron degeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号