Myosin light chain 2

  • 文章类型: Journal Article
    对胆碱酯酶(ric-8蛋白)抑制剂的抗性与调节G蛋白功能有关,但对其在心脏中潜在的生理重要性知之甚少。在本研究中,我们评估了对胆碱酯酶8b(Ric-8b)抑制剂的耐药性在确定心脏收缩功能方面的作用.我们开发了一种鼠模型,其中在添加他莫昔芬后,可以有条件地删除成年动物心脏组织中的ric-8b。在施用他莫昔芬后几天使用超声心动图测量,ric-8b的缺失导致收缩性严重降低。心室组织的组织学分析显示高度可变的心肌细胞大小,显著的纤维化和细胞凋亡的增加。RNA测序显示响应于涉及细胞外基质和炎症的心脏rc-8b缺失的转录重塑。磷酸化蛋白质组分析显示与肌球蛋白轻链2相关的磷酸肽的显著下调。在细胞层面,rc-8b的缺失导致通过β-肾上腺素能途径的L型钙通道的激活丧失。使用基于荧光共振能量转移的测定,我们显示了ric-8b蛋白与刺激性G蛋白选择性相互作用,Gαs.我们探索了在小鼠中使用类似方法在心脏组织中缺失Gnas(编码Gαs的基因)是否导致等效表型。心室中Gαs基因的条件性缺失导致对收缩功能和心脏组织学的可比影响。我们得出的结论是,ric-8b对于保持心脏收缩功能至关重要,可能是通过与刺激G蛋白相互作用和肌球蛋白轻链2的下游磷酸化。
    Resistance to inhibitors of cholinesterases (ric-8 proteins) are involved in modulating G-protein function, but little is known of their potential physiological importance in the heart. In the present study, we assessed the role of resistance to inhibitors of cholinesterase 8b (Ric-8b) in determining cardiac contractile function. We developed a murine model in which it was possible to conditionally delete ric-8b in cardiac tissue in the adult animal after the addition of tamoxifen. Deletion of ric-8b led to severely reduced contractility as measured using echocardiography days after administration of tamoxifen. Histological analysis of the ventricular tissue showed highly variable myocyte size, prominent fibrosis, and an increase in cellular apoptosis. RNA sequencing revealed transcriptional remodeling in response to cardiac ric-8b deletion involving the extracellular matrix and inflammation. Phosphoproteomic analysis revealed substantial downregulation of phosphopeptides related to myosin light chain 2. At the cellular level, the deletion of ric-8b led to loss of activation of the L-type calcium channel through the β-adrenergic pathways. Using fluorescence resonance energy transfer-based assays, we showed ric-8b protein selectively interacts with the stimulatory G-protein, Gαs. We explored if deletion of Gnas (the gene encoding Gαs) in cardiac tissue using a similar approach in the mouse led to an equivalent phenotype. The conditional deletion of the Gαs gene in the ventricle led to comparable effects on contractile function and cardiac histology. We conclude that ric-8b is essential to preserve cardiac contractile function likely through an interaction with the stimulatory G-protein and downstream phosphorylation of myosin light chain 2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人多能干细胞来源的心肌细胞(hPSC-CMs)对于研究人类心脏发育,药物发现,疾病建模,和细胞疗法。然而,混合心肌细胞亚型(心室-,心房-,和结节样心肌细胞)和hPSC-CM的成熟异质性限制了它们在体外和体内的应用。肌球蛋白轻链2(MYL2,编码心室/心肌同工型MLC2v蛋白)被认为是心肌的心室特异性标志物;然而,它在人类心脏发育过程中对心室的限制定位受到质疑。因此,目前尚不清楚MYL2是否明确标记了心室hESC-CM。在这里,通过使用MYL2-VenushESC报告行,我们表征了分化过程中MYL2-Venus阳性(MLC2v-Venus)hESC-CM的时间依赖性增加。我们还比较了分子,细胞,andfunctionalpropertiesbetweentheMLC2v-Venus+andMYL2-Venusnegative(MLC2v-Venus-)hESC-CMs.AtearlydifferentiationstagesofhESC-CMs,我们报道了MLC2v-Venus-和MLC2v-Venus+CM均表现出心室样特征,但MLC2v-Venus+hESC-CM的心室样细胞表现出比MLC2v-Venus-hESC-CM更发达的动作电位(AP)特性。同时,大约一半的MLC2v-Venus-hESC-CM人群表现出心房样AP特性,一半显示出心室样的AP特性,而只有约20%的MLC2v-Venus-hESC-CM表达心房标记核受体亚家族2组F成员2(NR2F2,也称为COUPTFII)。在较晚的时间点,几乎所有的MLC2v-Venus+hESC-CM都表现出心室样AP特性。进一步的分析表明,MLC2v-Venus+hESC-CM在培养期间MLC2v水平增加时具有增强的Ca2+瞬变。同时,与MLC2v-Venus-hESC-CM相比,MLC2v-Venus-hESC-CM显示出更明确的肌节结构和更好的线粒体功能。此外,与MLC2v-Venus-hESC-CM相比,MLC2v-Venus-hESC-CM对缺氧刺激更敏感。这些结果为人类心室肌细胞的发育提供了新的见解,并揭示了MLC2v的表达谱与心室hESC-CM发育之间的直接相关性。我们的发现MLC2v主要是发育未成熟的hESC-CM的心室标志物,对人类发育有影响。药物筛选,和疾病建模,并且该标记应该被证明有助于克服与hESC-CM异质性相关的问题。
    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great value for studies of human cardiac development, drug discovery, disease modeling, and cell therapy. However, the mixed cardiomyocyte subtypes (ventricular-, atrial-, and nodal-like myocytes) and the maturation heterogeneity of hPSC-CMs restrain their application in vitro and in vivo. Myosin light chain 2 (MYL2, encoding the ventricular/cardiac muscle isoform MLC2v protein) is regarded as a ventricular-specific marker of cardiac myocardium; however, its restricted localization to ventricles during human heart development has been questioned. Consequently, it is currently unclear whether MYL2 definitively marks ventricular hESC-CMs. Here, by using a MYL2-Venus hESC reporter line, we characterized a time-dependent increase of the MYL2-Venus positive (MLC2v-Venus+) hESC-CMs during differentiation. We also compared the molecular, cellular, and functional properties between the MLC2v-Venus+ and MYL2-Venus negative (MLC2v-Venus-) hESC-CMs. At early differentiation stages of hESC-CMs, we reported that both MLC2v-Venus- and MLC2v-Venus+ CMs displayed ventricular-like traits but the ventricular-like cells from MLC2v-Venus+ hESC-CMs displayed more developed action potential (AP) properties than that from MLC2v-Venus- hESC-CMs. Meanwhile, about a half MLC2v-Venus- hESC-CM population displayed atrial-like AP properties, and a half showed ventricular-like AP properties, whereas only ~ 20% of the MLC2v-Venus- hESC-CMs expressed the atrial marker nuclear receptor subfamily 2 group F member 2 (NR2F2, also named as COUPTFII). At late time points, almost all MLC2v-Venus+ hESC-CMs exhibited ventricular-like AP properties. Further analysis demonstrates that the MLC2v-Venus+ hESC-CMs had enhanced Ca2+ transients upon increase of the MLC2v level during cultivation. Concomitantly, the MLC2v-Venus+ hESC-CMs showed more defined sarcomeric structures and better mitochondrial function than those in the MLC2v-Venus- hESC-CMs. Moreover, the MLC2v-Venus+ hESC-CMs were more sensitive to hypoxic stimulus than the MLC2v-Venus- hESC-CMs. These results provide new insights into the development of human ventricular myocytes and reveal a direct correlation between the expression profile of MLC2v and ventricular hESC-CM development. Our findings that MLC2v is predominantly a ventricular marker in developmentally immature hESC-CMs have implications for human development, drug screening, and disease modeling, and this marker should prove useful in overcoming issues associated with hESC-CM heterogeneity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Respiratory syncytial virus (RSV) is the most frequently identified pathogen in children with acute lower respiratory tract infection. Fatal cases have mainly been reported during the first 6 months of life or in the presence of comorbidity.
    A 47-month-old girl was admitted to the pediatric intensive care unit following sudden cardiopulmonary arrest occurring at home. The electrocardiogram showed cardiac asystole, which was refractory to prolonged resuscitation efforts. Postmortem analyses detected RSV by polymerase chain reaction in an abundant, exudative pericardial effusion. Histopathological examination was consistent with viral myoepicarditis, including an inflammatory process affecting cardiac nerves and ganglia. Molecular analysis of sudden unexplained death genes identified a heterozygous mutation in myosin light chain 2, which was also found in two other healthy members of the family. Additional expert interpretation of the cardiac histology confirmed the absence of arrhythmogenic right ventricular dysplasia or hypertrophic cardiomyopathy.
    RSV-related sudden death in a normally developing child of this age is exceptional. This case highlights the risk of extrapulmonary manifestations associated with this infection, particularly arrhythmia induced by inflammatory phenomena affecting the cardiac autonomic nervous system. The role of the mutation in this context is uncertain, and it is therefore necessary to continue to assess how this pathogenic variant contributes to unexpected sudden death in childhood.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish.
    The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later.
    Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish.
    These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The aim of this study was to evaluate the effect of dietary supplementation of linseed and/or quinoa on tenderness and on proteome of lamb meat. Thirty-two Italian Merino lambs were distributed into 4 groups with different diet: control (CO) with no supplemental fat, linseed (LS), quinoa (QS) and QS+LS diets. Meat obtained by lamb fed linseed showed the lowest values of WBSF (P<0.001), hardness (P<0.01), gumminess (P<0.01) and chewiness (P<0.01). Proteomic changes of myofibrillar and sarcoplasmic proteins were estimated with SDS-PAGE, Western Blot and Two-Dimensional Gel Electrophoresis. In linseed group proteomic analysis revealed a degradation of desmin and TnT proteins complex and a major number of spots and phosphorylation isoforms of fast MLC2 patterns. Meat obtained by lamb fed quinoa showed a minor effect on the instrumental evaluation of meat tenderness and a major number of spots ascribed to sarcoplasmic proteins and fMHC. Data suggest that dietary supplementation may act on meat tenderness and on proteolytic pattern of myofibrillar fraction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adropin is a peptide encoded by the energy homeostasis associated gene (Enho) and plays a critical role in the regulation of lipid metabolism, insulin sensitivity, and endothelial function. Little is known of the effects of adropin in the brain and whether this peptide modulates ischemia-induced blood-brain barrier (BBB) injury. Here, we used an in vitro BBB model of rat brain microvascular endothelial cells (RBE4) and hypothesized that adropin would reduce endothelial permeability during ischemic conditions. To mimic ischemic conditions in vitro, RBE4 cell monolayers were subjected to 16h hypoxia/low glucose (HLG). This resulted in a significant increase in paracellular permeability to FITC-labeled dextran (40kDa), a dramatic upregulation of vascular endothelial growth factor (VEGF), and the loss of junction proteins occludin and VE-cadherin. Notably, HLG also significantly decreased Enho expression and adropin levels. Treatment of RBE4 cells with synthetic adropin (1, 10 and 100ng/ml) concentration-dependently reduced endothelial permeability after HLG, but this was not mediated through protection to junction proteins or through reduced levels of VEGF. We found that HLG dramatically increased myosin light chain 2 (MLC2) phosphorylation in RBE4 cells, which was significantly reduced by adropin treatment. We also found that HLG significantly increased Rho-associated kinase (ROCK) activity, a critical upstream effector of MLC2 phosphorylation, and that adropin treatment attenuated that effect. These data indicate that treatment with adropin reduces endothelial cell permeability after HLG insult by inhibition of the ROCK-MLC2 signaling pathway. These promising findings suggest that adropin protects against endothelial barrier dysfunction during ischemic conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The aim was to identify kinase activities involved in the phosphorylation of regulatory light chain (RLC) in situ in cardiomyocytes. In electrically stimulated rat cardiomyocytes, phosphatase inhibition by calyculin A unmasked kinase activities evoking an increase of phosphorylated RLC (P-RLC) from about 16% to about 80% after 80 min. The phosphorylation rate in cardiomyocytes was reduced by about 40% by the myosin light chain kinase (MLCK) inhibitor, ML-7. In rat ventricular muscle strips, calyculin A induced a positive inotropic effect that correlated with P-RLC levels. The inotropic effect and P-RLC elevation were abolished by ML-7 treatment. The kinase activities phosphorylating RLC in cardiomyocytes were reduced by about 60% by the non-selective kinase inhibitor staurosporine and by about 50% by the calmodulin antagonist W7. W7 eliminated the inhibitory effect of ML-7, suggesting that the cardiac MLCK is Ca(2+)/calmodulin (CaM)-dependent. The CaM-dependent kinase II (CaMKII) inhibitor KN-93 attenuated the calyculin A-induced RLC phosphorylation by about 40%, indicating a contribution from CaMKII. The residual phosphorylation in the presence of W7 indicated that also CaM-independent kinase activities might contribute. RLC phosphorylation was insensitive to protein kinase C inhibition. In conclusion, in addition to MLCK, CaMKII phosphorylates RLC in cardiomyocytes. Involvement of other kinases cannot be excluded.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Data from the trial known as Testosterone in Older Men with Mobility Limitations (TOM) has indicated an association between testosterone administration and a greater risk for adverse cardiovascular events. We therefore propose that regular exercise is a cardioprotective alternative that prevents detrimental changes in contractile activation when a deficiency in male sex hormones exists. Ten-week-old orchidectomized (ORX) rats were subjected to a 9-wk treadmill running program at moderate intensity starting 1 wk after surgery. Although exercise-induced cardiac hypertrophy was observed both in rats that underwent ORX and sham surgery, regular exercise enhanced cardiac myofilament Ca(2+) sensitivity and myosin light-chain 2 phosphorylation only in rats that underwent a sham operation. Although the rats that had sham surgery and and given exercise exhibited no change in maximum developed tension, regular running prevented the suppression of maximum active tension in the hearts of ORX rats. Regular exercise also prevented a shift in myosin heavy chain (MHC) isoforms toward β-MHC, a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity, and an increase in SERCA sensitivity in the hearts of ORX rats. Neither SERCA content nor its modulating component, phospholamban (PLB), was altered by exercise in either sham-operated or ORX rats. However, decreases in the phosphorylated Thr(17) form of PLB and the phosphorylated Thr(287) form of Ca(2+)/calmodulin-dependent kinase II in the hearts of ORX rats were abolished after regular exercise. These results thus support the use of regular running as a cardioprotective alternative to testosterone replacement in hypogonadal conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Gastrointestinal toxicity is a common adverse effect of mycophenolic acid (MPA) treatment in organ transplant patients, through poorly understood mechanisms. Phosphorylation of myosin light chain 2 (MLC2) is associated with epithelial tight junction (TJ) modulation which leads to defective epithelial barrier function, and has been implicated in GI diseases. The aim of this study was to investigate whether MPA could induce epithelial barrier permeability via MLC2 regulation. Caco-2 monolayers were exposed to therapeutic concentrations of MPA, and MLC2 and myosin light chain kinase (MLCK) expression were analyzed using PCR and immunoblotting. Epithelial cell permeability was assessed by measuring transepithelial resistance (TER) and the flux of paracellular permeability marker FITC-dextran across the epithelial monolayers. MPA increased the expression of MLC2 and MLCK at both the transcriptional and translational levels. In addition, the amount of phosphorylated MLC2 was increased after MPA treatment. Confocal immunofluorescence analysis showed redistribution of TJ proteins (ZO-1 and occludin) after MPA treatment. This MPA mediated TJ disruption was not due to apoptosis or cell death. Additionally ML-7, a specific inhibitor of MLCK was able to reverse both the MPA mediated decrease in TER and the increase in FITC-dextran influx, suggesting a modulating role of MPA on epithelial barrier permeability via MLCK activity. These results suggest that MPA induced alterations in MLC2 phosphorylation and may have a role in the patho-physiology of intestinal epithelial barrier disruption and may be responsible for the adverse effects (GI toxicity) of MPA on the intestine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study investigated the effects of a 60-day bed rest with or without countermeasures on muscular phenotype and post-translational modifications of the regulatory Myosin Light Chain 2 (MLC2) protein. Soleus biopsies were obtained from female subjects before and after bed rest. Control subjects were assigned only to bed rest (BR), BR+Ex subjects were submitted to combined aerobic and resistive exercises, and BR+Nut to nutritional leucine and valine diet. We determined Myosin Heavy Chains (MHC) and MLC2 composition of muscles using 1D SDS-PAGE. MLC2 phosphorylation was measured on 2D gels and O-N-Acetyl Glucosaminylation (O-GlcNAc) level of MLC2 was determined. Our results showed a slow-to-fast shift of MHC and MLC2 isoforms in BR and BR+Nut while BR+Ex combinations prevented these phenotype changes. After BR, the MLC2 phosphorylation state was increased while the global MLC2 glycosylation level was decreased. Exercises prevented the variations of phosphorylation and glycosylation observed after BR whereas nutrition had no effects. These results suggested an interplay between phosphorylation and glycosylation of MLC2, which might be involved in the development of muscle atrophy and associated changes. These findings of differential responses to exercises and nutrition protocols were discussed with implications for future prescription models to preserve muscle against long-term unloading.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号