Muscle fiber length

  • 文章类型: Journal Article
    使用记录的数据模拟运动的工作流程通常从选择通用的肌肉骨骼模型并对其进行缩放以表示特定于受试者的特征开始。用文献中现有的缩放方法计算的肌腱参数模拟肌肉动力学,然而,与可衡量的结果相比,会产生一些不一致的地方。例如,用线性缩放参数模拟步行过程中的纤维长度和肌肉兴奋与文献中的既定模式不同。这项研究提供了一种工具,该工具利用已报告的体内实验观察结果来调整肌肉肌腱参数,并评估其在估计步行过程中肌肉兴奋和代谢成本方面的影响。从缩放的通用肌肉骨骼模型中,我们调整了最佳的纤维长度,肌腱松弛长度,和肌腱刚度,以匹配从超声成像报告的纤维长度和肌肉被动力-长度关系,以匹配报告的体内关节力矩-角度关系。使用调整后的参数,肌肉收缩得更等距,和比目鱼的工作范围比线性缩放参数更好地估计。此外,使用调整后的参数,模型中几乎所有肌肉兴奋的开/关时间与报告的肌电信号一致,与线性缩放参数相比,整个步态周期中的代谢率轨迹变化很大。我们的工具,免费在线提供,可以自定义的肌肉肌腱参数容易和适应纳入更多的实验数据。
    The workflow to simulate motion with recorded data usually starts with selecting a generic musculoskeletal model and scaling it to represent subject-specific characteristics. Simulating muscle dynamics with muscle-tendon parameters computed from existing scaling methods in literature, however, yields some inconsistencies compared to measurable outcomes. For instance, simulating fiber lengths and muscle excitations during walking with linearly scaled parameters does not resemble established patterns in the literature. This study presents a tool that leverages reported in vivo experimental observations to tune muscle-tendon parameters and evaluates their influence in estimating muscle excitations and metabolic costs during walking. From a scaled generic musculoskeletal model, we tuned optimal fiber length, tendon slack length, and tendon stiffness to match reported fiber lengths from ultrasound imaging and muscle passive force-length relationships to match reported in vivo joint moment-angle relationships. With tuned parameters, muscle contracted more isometrically, and soleus\'s operating range was better estimated than with linearly scaled parameters. Also, with tuned parameters, on/off timing of nearly all muscles\' excitations in the model agreed with reported electromyographic signals, and metabolic rate trajectories varied significantly throughout the gait cycle compared to linearly scaled parameters. Our tool, freely available online, can customize muscle-tendon parameters easily and be adapted to incorporate more experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    保持肉类质量对于可持续的牲畜管理至关重要。因此,确定替代饲料材料,同时考虑消费者的接受度是至关重要的。所以,这项研究的目的是评估补充生物量的饲料对兔肌肉的物理特性的影响,感官轮廓,和评估者对他们的情绪反应。共有30只52天大的断奶加利福尼亚品种兔子被随机分配到三种饮食处理之一:标准复合饮食(SCD),SCD补充4%C.glomerata(CG4),或SCD补充了8%的C.glomerata(CG8)。在122天大的兔子被宰杀后,对兔背背最长肌(LD)和后腿(HL)肌肉进行了尸检。物理和组织形态特征,感官分析,并确定了对兔子肌肉的情绪反应。研究结果显示CG4和CG8处理显著增加兔肌肉水分,而CG8增加了HL肌肉的烹饪损失(p<0.05)。此外,与SCD相比,两种CG处理均降低了新鲜和煮熟的兔肌肉的黑暗和发红(p<0.05)。与SCD相比,CG8处理导致更长的LD肌纤维(p<0.05)。评估人员发现,兔肉的每种感官描述的平均得分是可以接受的,并且食用CG8-HL肌肉可以根据情绪反应增加幸福感。因此,用C.glomerata替代兔饲料中的传统饲料材料不仅可以带来更可持续的生产,而且可以带来更多消费者接受的兔肉。
    Maintaining meat quality is essential to sustainable livestock management. Therefore, identifying alternative feed materials while considering consumer acceptance is crucial. So, the aim of this study was to evaluate the effect of C. glomerata-biomass-supplemented feeds on rabbit muscles\' physical properties, sensory profiles, and evaluators\' emotional responses to them. A total of thirty 52-day-old weaned Californian breed rabbits were randomly allocated to one of three dietary treatments: standard compound diet (SCD), SCD supplemented with 4% C. glomerata (CG4), or SCD supplemented with 8% C. glomerata (CG8). After the 122-day-old rabbits were slaughtered, post-mortem dissection of the rabbit Longissimus dorsi (LD) and hind leg (HL) muscles was conducted. The physical and histomorphometric features, sensory analyses, and emotional responses to the rabbit\'s muscles were determined. Study results revealed CG4 and CG8 treatments significantly increased rabbit muscle moisture, while CG8 increased cooking losses in HL muscles (p < 0.05). Moreover, both CG treatments reduced the darkness and redness of fresh and cooked rabbit muscles compared to SCD (p < 0.05). CG8 treatment compared to SCD resulted in longer LD muscle fibers (p < 0.05). Evaluators discovered that the average scores for each sensory description of rabbit meat are acceptable and that consuming CG8-HL muscles can increase happiness based on emotional responses. Consequently, replacing traditional feed materials in rabbit feed with C. glomerata can lead to not only more sustainable production but also more consumer-acceptable rabbit meat.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Musculoskeletal models rely heavily on the use of an anatomical dataset and clearly defined assumptions to accurately model the subject being studied. Therefore, it is important to understand the limitations of using musculoskeletal models to study individuals. This paper describes a method of measuring in vivo gracilis muscle-tendon unit length and presents a comparison of experimental data versus predictions from four musculoskeletal models in OpenSim. The largest errors occurred when the knee was fully extended. At this position, the absolute average muscle-tendon unit length error was 7% and the absolute average fiber length error was between 15% and 32%. However, the variability of these errors was significant. Manual linear scaling based on an anthropometric database did not capture the variability observed in subjects. The fiber length errors observed are predicted to have a significant impact on muscle force production that may not represent true subject specific force-length relationship of the gracilis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Fascicle length of m. vastus lateralis in cyclists has been shown to correlate positively with peak sprint cycling power normalized for lean body mass. We investigated whether vasti morphology affects sprint cycling power via force-length and force-velocity relationships. We simulated isokinetic sprint cycling at pedaling rates ranging from 40 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight leg muscles. Input of the model was muscle stimulation over time, which was optimized to maximize the average power output over a pedal cycle. This was done for a reference model and for models in which the vasti had equal volume but different morphology. It was found that models with longer muscle fibers but a reduced physiological cross-sectional area of the vasti produced a higher sprint cycling power. This was partly explained by better alignment of the peak power-pedaling rate curve of the vasti with the corresponding curves of the other leg muscles. The highest sprint cycling power was achieved in a model in which the increase in muscle fiber length of the vasti was accompanied by a concomitant shift in optimum knee angle. It was concluded that muscle mechanics can partly explain the positive correlations between fascicle length of m. vastus lateralis and normalized peak sprint cycling power. It should be investigated whether muscle fiber length of the vasti and optimum knee angle are suitable training targets for athletes who want to concurrently improve their sprint and endurance cycling performance.NEW & NOTEWORTHY We simulated isokinetic sprint cycling at pedaling rates ranging from 40 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight leg muscles. We selectively modified vasti morphology: we lengthened the muscle fibers and reduced the physiological cross-sectional area. The modified model was able to produce a higher sprint cycling power.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The aim of this study was to examine anatomical properties of the adductor magnus through a detailed classification, and to hypothesize its function and size to gather enough information about morphology. Ten cadaveric specimens of the adductor magnus were used. The muscle was separated into four portios (AM1-AM4) based on the courses of the corresponding perforating arteries, and its volume, muscle length, muscle fiber length and physiological cross-sectional area were assessed. The architectural characteristics of these four portions of the adductor magnus were then classified with the aid of principal component analysis. The results led us into demarcating the most proximal part of the adductor magnus (AM1) from the remaining parts (AM2, AM3, and AM4). Classification of the adductor magnus in terms of architectural characteristics differed from the more traditional anatomical distinction. The AM2, AM3, and AM4, having longer muscle fiber lengths than the AM1, appear to be designed as displacers for moving the thigh through a large range of motion. The AM1 appears instead to be oriented principally toward stabilizing the hip joint. The large mass of the adductor magnus should thus be regarded as a complex of functionally differentiable muscle portions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号