Multiple instance learning

多实例学习
  • 文章类型: Journal Article
    T细胞受体(TCR)是人体免疫系统的关键,了解其细微差别可以显着增强我们预测癌症相关免疫反应的能力。然而,现有的方法经常忽略T细胞受体(TCR)的序列内和序列间相互作用,限制了基于序列的癌症相关免疫状态预测的发展。为了应对这一挑战,我们提议BertTCR,一个创新的深度学习框架,旨在使用TCR预测癌症相关的免疫状态。BertTCR将预先训练的蛋白质大语言模型与深度学习架构相结合,使其能够从TCR中提取更深层次的上下文信息。与三种最先进的基于序列的方法相比,BertTCR将甲状腺癌检测的外部验证集的AUC提高了21个百分点。此外,该模型在2000多个公开可用的TCR库上进行了训练,涵盖了17种癌症和健康样本,它已经在多个公共外部数据集上验证了其区分癌症患者和健康个体的能力。此外,BertTCR可以准确地对各种癌症类型和健康个体进行分类。总的来说,BertTCR是基于TCR的癌症相关免疫状态预测的先进方法,为广泛的免疫状态预测任务提供了有希望的潜力。
    The T cell receptor (TCR) repertoire is pivotal to the human immune system, and understanding its nuances can significantly enhance our ability to forecast cancer-related immune responses. However, existing methods often overlook the intra- and inter-sequence interactions of T cell receptors (TCRs), limiting the development of sequence-based cancer-related immune status predictions. To address this challenge, we propose BertTCR, an innovative deep learning framework designed to predict cancer-related immune status using TCRs. BertTCR combines a pre-trained protein large language model with deep learning architectures, enabling it to extract deeper contextual information from TCRs. Compared to three state-of-the-art sequence-based methods, BertTCR improves the AUC on an external validation set for thyroid cancer detection by 21 percentage points. Additionally, this model was trained on over 2000 publicly available TCR libraries covering 17 types of cancer and healthy samples, and it has been validated on multiple public external datasets for its ability to distinguish cancer patients from healthy individuals. Furthermore, BertTCR can accurately classify various cancer types and healthy individuals. Overall, BertTCR is the advancing method for cancer-related immune status forecasting based on TCRs, offering promising potential for a wide range of immune status prediction tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • DOI:
    文章类型: Journal Article
    整个幻灯片图像(WSI),通过高分辨率数字扫描显微镜载玻片在多个尺度上获得,是现代数字病理学的基石。然而,它们代表了基于AI/AI介导的分析的特殊挑战,因为病理标记通常在幻灯片级别完成,而不是平铺级。不仅仅是医学诊断记录在样本级别,癌基因突变的检测也是通过实验获得的,并由癌症基因组图谱(TCGA)等计划记录,在幻灯片级别。这构成了双重挑战:a)准确预测总体癌症表型和b)找出在平铺水平上与其相关的细胞形态。为了应对这些挑战,针对两种流行的癌症类型,探索了一种弱监督多实例学习(MIL)方法,浸润性乳腺癌(TCGA-BRCA)和肺鳞癌(TCGA-LUSC)。探索了这种方法用于低放大倍数水平的肿瘤检测和各种水平的TP53突变。我们的结果表明,MIL的新型附加实现与参考实现的性能相匹配(AUC0.96),并且仅略微优于注意MIL(AUC0.97)。更有趣的是,从分子病理学家的角度来看,这些不同的人工智能架构识别出对形态特征的不同敏感性(通过检测感兴趣的区域,不同扩增水平的RoI)。很明显,TP53突变对细胞形态得以解决的较高应用中的特征最敏感。
    Whole Slide Images (WSI), obtained by high-resolution digital scanning of microscope slides at multiple scales, are the cornerstone of modern Digital Pathology. However, they represent a particular challenge to AI-based/AI-mediated analysis because pathology labeling is typically done at slide-level, instead of tile-level. It is not just that medical diagnostics is recorded at the specimen level, the detection of oncogene mutation is also experimentally obtained, and recorded by initiatives like The Cancer Genome Atlas (TCGA), at the slide level. This configures a dual challenge: a) accurately predicting the overall cancer phenotype and b) finding out what cellular morphologies are associated with it at the tile level. To address these challenges, a weakly supervised Multiple Instance Learning (MIL) approach was explored for two prevalent cancer types, Invasive Breast Carcinoma (TCGA-BRCA) and Lung Squamous Cell Carcinoma (TCGA-LUSC). This approach was explored for tumor detection at low magnification levels and TP53 mutations at various levels. Our results show that a novel additive implementation of MIL matched the performance of reference implementation (AUC 0.96), and was only slightly outperformed by Attention MIL (AUC 0.97). More interestingly from the perspective of the molecular pathologist, these different AI architectures identify distinct sensitivities to morphological features (through the detection of Regions of Interest, RoI) at different amplification levels. Tellingly, TP53 mutation was most sensitive to features at the higher applications where cellular morphology is resolved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结直肠癌(CRC)是美国第三大最常见的癌症。肿瘤出芽(TB)检测和定量是通过组织病理学图像分析确定CRC阶段的关键但劳动密集型步骤。为了帮助这个过程,我们使用SAM-Adapter对CRC组织病理学图像上的任意段模型(SAM)进行调整以分割TB。在这种方法中,我们会自动从CRC图像中获取特定于任务的提示,并以参数有效的方式训练SAM模型。我们使用病理学家的注释将模型的预测与从零开始训练的模型的预测进行比较。因此,我们的模型实现了0.65的交集联合(IoU)和0.75的实例级Dice评分,这在匹配病理学家的TB注释方面是有希望的。我们相信我们的研究提供了一种新的解决方案来识别H&E染色的组织病理学图像上的TBs。我们的研究还证明了将基础模型用于病理图像分割任务的价值。
    Colorectal cancer (CRC) is the third most common cancer in the United States. Tumor Budding (TB) detection and quantification are crucial yet labor-intensive steps in determining the CRC stage through the analysis of histopathology images. To help with this process, we adapt the Segment Anything Model (SAM) on the CRC histopathology images to segment TBs using SAM-Adapter. In this approach, we automatically take task-specific prompts from CRC images and train the SAM model in a parameter-efficient way. We compare the predictions of our model with the predictions from a trained-from-scratch model using the annotations from a pathologist. As a result, our model achieves an intersection over union (IoU) of 0.65 and an instance-level Dice score of 0.75, which are promising in matching the pathologist\'s TB annotation. We believe our study offers a novel solution to identify TBs on H&E-stained histopathology images. Our study also demonstrates the value of adapting the foundation model for pathology image segmentation tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    整个幻灯片图像(WSI)分析,由深度学习算法驱动,有可能彻底改变肿瘤检测,分类,和治疗反应预测。然而,挑战依然存在,例如在各种癌症类型中有限的模型泛化性,补丁级注释的劳动密集型性质,以及整合多倍放大信息以全面了解病理模式的必要性。
    为了应对这些挑战,我们介绍MAMILNet,用于WSI分析的创新多尺度注意多实例学习框架。将注意力机制纳入MAMILNet有助于其在不同癌症类型和预测任务中的非凡普遍性。此模型将整个幻灯片视为“bags”,将单个修补程序视为“实例”。“通过采用这种方法,MAMILNet有效地消除了复杂的补丁级别标签的要求,显著减少病理学家的人工工作量。为了提高预测准确性,该模型采用了多尺度的“咨询”策略,促进从各种放大倍数汇总测试结果。
    我们对MAMILNet的评估包括1171例,包括多种癌症类型,展示其在预测复杂任务方面的有效性。值得注意的是,MAMILNet在不同领域取得了令人印象深刻的成果:用于乳腺癌肿瘤检测,曲线下面积(AUC)为0.8872,准确度为0.8760。在肺癌分型诊断领域,它实现了0.9551的AUC和0.9095的准确性。此外,在预测卵巢癌的药物治疗反应方面,MAMILNet实现了0.7358的AUC和0.7341的准确性。
    这项研究的结果强调了MAMILNet在推动肿瘤领域内精准医学和个性化治疗计划的发展方面的潜力。通过有效解决与模型泛化相关的挑战,注释工作负载,和多放大倍数集成,MAMILNet在增强癌症患者的医疗保健结果方面显示出希望。该框架在准确检测乳腺肿瘤方面的成功,诊断肺癌类型,预测卵巢癌治疗反应突出了其对该领域的重大贡献,并为改善患者护理铺平了道路。
    UNASSIGNED: Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns.
    UNASSIGNED: In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as \"bags\" and individual patches as \"instances.\" By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale \"consultation\" strategy, facilitating the aggregation of test outcomes from various magnifications.
    UNASSIGNED: Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341.
    UNASSIGNED: The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework\'s success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在多实例学习(MIL)中,一个bag表示具有一组实例的样本,每个变量都由解释变量的向量描述,但整个袋子只有一个标签/响应。尽管迄今为止已经开发了许多用于MIL的方法,很少有人关注模型和结果的可解释性。提出的贝叶斯回归模型分为两个层次,它透明地显示了解释性变量如何解释和实例如何对袋子响应做出贡献。此外,同时解决两个选择问题;实例选择以找出每个包中负责包响应的实例,和变量选择来搜索重要的协变量。为了探索为选择解释变量和实例而创建的指标变量的联合离散空间,对猎枪随机搜索算法进行了修改,以适应MIL上下文。此外,所提出的模型提供了一种自然而严格的方法来量化系数估计和结果预测中的不确定性,这是许多现代MIL应用程序所要求的。仿真研究表明,所提出的回归模型可以选择具有高性能(AUC大于0.86)的变量和实例,从而很好地预测反应。所提出的方法应用于麝香数据,以预测具有不同构象(实例)的分子(袋)与目标受体之间的结合强度(标签)。它优于所有现有的方法,并可以识别与建模响应相关的变量。
    In multiple instance learning (MIL), a bag represents a sample that has a set of instances, each of which is described by a vector of explanatory variables, but the entire bag only has one label/response. Though many methods for MIL have been developed to date, few have paid attention to interpretability of models and results. The proposed Bayesian regression model stands on two levels of hierarchy, which transparently show how explanatory variables explain and instances contribute to bag responses. Moreover, two selection problems are simultaneously addressed; the instance selection to find out the instances in each bag responsible for the bag response, and the variable selection to search for the important covariates. To explore a joint discrete space of indicator variables created for selection of both explanatory variables and instances, the shotgun stochastic search algorithm is modified to fit in the MIL context. Also, the proposed model offers a natural and rigorous way to quantify uncertainty in coefficient estimation and outcome prediction, which many modern MIL applications call for. The simulation study shows the proposed regression model can select variables and instances with high performance (AUC greater than 0.86), thus predicting responses well. The proposed method is applied to the musk data for prediction of binding strengths (labels) between molecules (bags) with different conformations (instances) and target receptors. It outperforms all existing methods, and can identify variables relevant in modeling responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项研究中,我们提出了一种基于深度学习的多模态分类方法,用于数字病理学中的淋巴瘤诊断,其利用整个载玻片图像(WSI)作为主要图像数据和流式细胞术(FCM)数据作为辅助信息。在恶性淋巴瘤的病理诊断中,FCM在诊断过程中作为有价值的辅助信息,为预测亚型的主要类别(超类)提供有用的见解。通过将图像和FCM数据合并到分类过程中,我们可以开发一种模仿病理学家诊断过程的方法,增强可解释性。为了合并超类及其子类之间的层次结构,所提出的方法利用网络结构,有效地结合了专家(MoE)和多实例学习(MIL)技术的混合,其中MIL因其在数字病理学中处理WSI的有效性而得到广泛认可。提出的方法中的MoE网络由用于超类分类的门控网络和用于(子)类分类的多个专家网络组成,专门为每个超类。为了评估我们方法的有效性,我们使用600例淋巴瘤病例进行了六级分类任务的实验.该方法的分类准确率为72.3%,超过了通过FCM和图像的直接组合获得的69.5%,以及仅使用图像的方法实现的70.2%。此外,MoE和MIL中多个权重的组合允许特定细胞和肿瘤区域的可视化,导致了传统方法无法达到的高度解释性模型。预计通过瞄准更多的类和增加专家网络的数量,该方法可以有效地应用于淋巴瘤诊断的实际问题。
    In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:c-MYC和BCL2阳性是弥漫性大B细胞淋巴瘤的重要预后因素。然而,人工量化受到观察者内部和观察者之间显著差异的影响。我们开发了一种自动方法,用于在组织切片的整个载玻片图像中进行定量,其中手动定量需要评估具有可能异质染色的大面积组织。我们在表达和染色更均匀的较小组织微阵列核心中使用肿瘤阳性的注释来训练该方法,然后将该模型转换为整个载玻片图像。
    方法:我们的方法应用了一种称为基于注意力的多实例学习的技术,以从病理学家评分的组织微阵列核心中回归c-MYC阳性和BCL2阳性肿瘤细胞的比例。该技术不需要单个细胞核的注释,而是在肿瘤阳性百分比的核心水平注释上进行训练。我们通过将载玻片细分为较小的核心大小的组织区域并计算总分数,将该模型转换为整个载玻片图像的评分。我们的方法在斯坦福的公共组织微阵列数据集上进行了训练,并应用于淋巴瘤流行病学结果研究产生的地理上不同的多中心队列的全幻灯片图像。
    结果:在组织微阵列中,自动化方法与病理学家c-MYC和BCL2评分的Pearson相关性分别为0.843和0.919.当使用标准临床阈值时,我们的方法对c-MYC的敏感性/特异性为0.743/0.963,对BCL2的敏感性/特异性为0.938/0.951。对于双表达式,敏感性和特异性分别为0.720和0.974。当翻译成由两名病理学家评分的外部WSI数据集时,c-MYC的Pearson相关性为0.753和0.883,BCL2的Pearson相关性为0.749和0.765,c-MYC的敏感性/特异性为0.857/0.991和0.706/0.930,BCL2为0.856/0.719和0.855/0.690,双表达式为0.890/1.00和0.598/0.952。生存分析表明,对于无进展生存,模型预测的TMA得分显着分层双表达者和非双表达者(p=0.0345),而病理学家评分没有(p=0.128)。
    结论:我们得出的结论是,使用基于注意力的多实例学习可以回归阳性染色的比例,这些模型很好地推广到整个幻灯片图像,我们的模型可以提供无进展生存结局的非劣质分层.
    BACKGROUND: c-MYC and BCL2 positivity are important prognostic factors for diffuse large B-cell lymphoma. However, manual quantification is subject to significant intra- and inter-observer variability. We developed an automated method for quantification in whole-slide images of tissue sections where manual quantification requires evaluating large areas of tissue with possibly heterogeneous staining. We train this method using annotations of tumor positivity in smaller tissue microarray cores where expression and staining are more homogeneous and then translate this model to whole-slide images.
    METHODS: Our method applies a technique called attention-based multiple instance learning to regress the proportion of c-MYC-positive and BCL2-positive tumor cells from pathologist-scored tissue microarray cores. This technique does not require annotation of individual cell nuclei and is trained instead on core-level annotations of percent tumor positivity. We translate this model to scoring of whole-slide images by tessellating the slide into smaller core-sized tissue regions and calculating an aggregate score. Our method was trained on a public tissue microarray dataset from Stanford and applied to whole-slide images from a geographically diverse multi-center cohort produced by the Lymphoma Epidemiology of Outcomes study.
    RESULTS: In tissue microarrays, the automated method had Pearson correlations of 0.843 and 0.919 with pathologist scores for c-MYC and BCL2, respectively. When utilizing standard clinical thresholds, the sensitivity/specificity of our method was 0.743 / 0.963 for c-MYC and 0.938 / 0.951 for BCL2. For double-expressors, sensitivity and specificity were 0.720 and 0.974. When translated to the external WSI dataset scored by two pathologists, Pearson correlation was 0.753 & 0.883 for c-MYC and 0.749 & 0.765 for BCL2, and sensitivity/specificity was 0.857/0.991 & 0.706/0.930 for c-MYC, 0.856/0.719 & 0.855/0.690 for BCL2, and 0.890/1.00 & 0.598/0.952 for double-expressors. Survival analysis demonstrates that for progression-free survival, model-predicted TMA scores significantly stratify double-expressors and non double-expressors (p = 0.0345), whereas pathologist scores do not (p = 0.128).
    CONCLUSIONS: We conclude that proportion of positive stains can be regressed using attention-based multiple instance learning, that these models generalize well to whole slide images, and that our models can provide non-inferior stratification of progression-free survival outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    弱监督视频异常检测是一种基于标记的视频数据评估单个帧中的异常级别的方法。通过评估从无偏状态的帧导出的距离的偏差来计算异常分数。弱监督视频异常检测遇到了错误警报的巨大挑战,源于各种来源,主要原因是在学习过程中框架标签的反映不足。在以往的研究中,多实例学习一直是解决这一问题的关键方案,需要识别异常段和正常段之间的可辨别的特征。同时,必须识别特征空间内的共享偏差并培养代表性模型。在这项研究中,我们介绍了一个锚定在内存单元上的新的多实例学习框架,这增加了基于内存的功能,并有效地弥合了正常和异常实例之间的差距。通过将多头注意力特征增强模块和损失函数与KL散度和基于高斯分布估计的方法相结合来促进这种增强。该方法识别可区分的特征并确保实例间距离,从而加强了由分布近似的异常和正常实例之间的距离度量。这项研究的贡献涉及提出一种基于MIL的新颖框架,用于执行WSVAD并在增强过程中提出有效的集成策略。对基准数据集XD-Violence和UCF-Crime进行了广泛的实验,以证实所提出模型的有效性。
    Weakly supervised video anomaly detection is a methodology that assesses anomaly levels in individual frames based on labeled video data. Anomaly scores are computed by evaluating the deviation of distances derived from frames in an unbiased state. Weakly supervised video anomaly detection encounters the formidable challenge of false alarms, stemming from various sources, with a major contributor being the inadequate reflection of frame labels during the learning process. Multiple instance learning has been a pivotal solution to this issue in previous studies, necessitating the identification of discernible features between abnormal and normal segments. Simultaneously, it is imperative to identify shared biases within the feature space and cultivate a representative model. In this study, we introduce a novel multiple instance learning framework anchored on a memory unit, which augments features based on memory and effectively bridges the gap between normal and abnormal instances. This augmentation is facilitated through the integration of an multi-head attention feature augmentation module and loss function with a KL divergence and a Gaussian distribution estimation-based approach. The method identifies distinguishable features and secures the inter-instance distance, thus fortifying the distance metrics between abnormal and normal instances approximated by distribution. The contribution of this research involves proposing a novel framework based on MIL for performing WSVAD and presenting an efficient integration strategy during the augmentation process. Extensive experiments were conducted on benchmark datasets XD-Violence and UCF-Crime to substantiate the effectiveness of the proposed model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对个体乳腺癌风险的准确预测为个性化预防和早期发现铺平了道路。遗传信息和乳腺密度的结合已被证明可以改善对现有模型的预测,但是,尽管与风险相关,但详细的基于图像的特征尚未包括在内。可以使用深度学习算法从乳房X光照片中提取复杂的信息,然而,这是一个具有挑战性的研究领域,部分原因是该领域缺乏数据,部分原因是计算负担。我们提出了一种基于注意力的多实例学习(MIL)模型,该模型可以准确、在全分辨率检测癌症之前进行的乳房X光检查的短期风险预测。当前筛查检测到的癌症在模型开发过程中与先验混合,以促进与风险相关的特征和与癌症形成相关的特征的检测。除了缓解数据稀缺问题。MAI风险在5至55个月之间继续发展筛查或间隔癌症的女性的无癌筛查乳房X线照片中达到AUC为0.747[0.711,0.783],在考虑已确定的临床风险因素时,优于IBIS(AUC0.594[0.557,0.633])和VAS(AUC0.649[0.614,0.683])。
    Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:深度学习彻底改变了数字病理学,允许自动分析苏木精和曙红(H&E)染色的整个幻灯片图像(WSI)的不同任务。WSI被分解成更小的图像,称为瓷砖,神经网络对每个瓦片进行编码。许多最近的作品使用监督的基于注意力的模型来将图块级特征聚合到幻灯片级表示中,然后用于下游分析。训练监督的基于注意力的模型是计算密集型的,注意模块的架构优化是不平凡的,和标记的数据并不总是可用的。因此,我们开发了一种称为SAMPLER的无监督快速方法来生成幻灯片级表示。
    方法:SAMPLER的幻灯片级表示是通过对多尺度图块级特征的累积分布函数进行编码来生成的。为了评估采样器的有效性,乳腺癌(BRCA)的幻灯片水平表示,非小细胞肺癌(NSCLC),癌症基因组图谱(TCGA)的肾细胞癌(RCC)WSI用于训练区分FFPE和冷冻WSI中肿瘤亚型的单独分类器。此外,BRCA和NSCLC分类器在冷冻WSI上进行外部验证。此外,SAMPLER的注意力图识别感兴趣的区域,由病理学家评估。为了确定SAMPLER的时间效率,我们将SAMPLER的运行时间与两个基于注意力的模型进行了比较。SAMPLER概念用于改进上下文感知的多头注意力模型(上下文-MHA)的设计。
    结果:基于SAMPLER的分类器与最先进的注意力深度学习模型相当,可以区分BRCA的亚型(AUC=0.911±0.029),非小细胞肺癌(AUC=0.940±0.018),和FFPEWSI(内部测试集)上的RCC(AUC=0.987±0.006)。然而,训练基于SAMLER的分类器速度>100倍。SAMPLER模型在冷冻WSI的内部和外部测试集上成功区分了肿瘤亚型。组织病理学检查证实,SAMPLER鉴定的高度关注图块包含亚型特异性形态特征。改进的上下文-MHA区分了BRCA和RCC的亚型(BRCA-AUC=0.921±0.027,RCC-AUC=0.988±0.010),在内部测试FFPEWSI中具有更高的准确性。
    结论:我们的无监督统计方法可以快速有效地分析WSI,与基于注意力的深度学习方法相比,可扩展性大大提高。基于SAMPLER的分类器和可解释的注意力图的高精度表明,SAMPLER成功地编码了WSI内的不同形态,并将适用于一般组织学图像分析问题。
    背景:这项研究得到了国家癌症研究所的支持(批准号。R01CA230031和P30CA034196)。
    BACKGROUND: Deep learning has revolutionized digital pathology, allowing automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. WSIs are broken into smaller images called tiles, and a neural network encodes each tile. Many recent works use supervised attention-based models to aggregate tile-level features into a slide-level representation, which is then used for downstream analysis. Training supervised attention-based models is computationally intensive, architecture optimization of the attention module is non-trivial, and labeled data are not always available. Therefore, we developed an unsupervised and fast approach called SAMPLER to generate slide-level representations.
    METHODS: Slide-level representations of SAMPLER are generated by encoding the cumulative distribution functions of multiscale tile-level features. To assess effectiveness of SAMPLER, slide-level representations of breast carcinoma (BRCA), non-small cell lung carcinoma (NSCLC), and renal cell carcinoma (RCC) WSIs of The Cancer Genome Atlas (TCGA) were used to train separate classifiers distinguishing tumor subtypes in FFPE and frozen WSIs. In addition, BRCA and NSCLC classifiers were externally validated on frozen WSIs. Moreover, SAMPLER\'s attention maps identify regions of interest, which were evaluated by a pathologist. To determine time efficiency of SAMPLER, we compared runtime of SAMPLER with two attention-based models. SAMPLER concepts were used to improve the design of a context-aware multi-head attention model (context-MHA).
    RESULTS: SAMPLER-based classifiers were comparable to state-of-the-art attention deep learning models to distinguish subtypes of BRCA (AUC = 0.911 ± 0.029), NSCLC (AUC = 0.940 ± 0.018), and RCC (AUC = 0.987 ± 0.006) on FFPE WSIs (internal test sets). However, training SAMLER-based classifiers was >100 times faster. SAMPLER models successfully distinguished tumor subtypes on both internal and external test sets of frozen WSIs. Histopathological review confirmed that SAMPLER-identified high attention tiles contained subtype-specific morphological features. The improved context-MHA distinguished subtypes of BRCA and RCC (BRCA-AUC = 0.921 ± 0.027, RCC-AUC = 0.988 ± 0.010) with increased accuracy on internal test FFPE WSIs.
    CONCLUSIONS: Our unsupervised statistical approach is fast and effective for analyzing WSIs, with greatly improved scalability over attention-based deep learning methods. The high accuracy of SAMPLER-based classifiers and interpretable attention maps suggest that SAMPLER successfully encodes the distinct morphologies within WSIs and will be applicable to general histology image analysis problems.
    BACKGROUND: This study was supported by the National Cancer Institute (Grant No. R01CA230031 and P30CA034196).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号