Mitochondrial calcium uniporter

线粒体钙单转体
  • 文章类型: Journal Article
    本研究的目的是阐明MCU对GC患者临床病理特征的影响,探讨线粒体钙摄取转运蛋白MCU在GC的发生和发展过程中的作用及机制,并探讨其对线粒体代谢途径和生物合成的影响。最终目标是确定GC患者临床管理的新目标和策略。
    肿瘤和邻近组织标本取自205例胃癌患者,并进行免疫组织化学检查,以评估MCU的表达及其与临床病理特征和预后的关系。数据来自TCGA,检索了胃癌患者的GTEx和GEO数据库,生物信息学分析用于研究MCU表达与临床病理特征之间的关联。此外,我们对单片机在GC患者中的作用进行了深入分析。我们研究了GC中MCU表达及其对线粒体功能的影响之间的相关性,新陈代谢,生物合成,和免疫细胞。此外,我们研究了与MCU相互作用的蛋白质或分子。
    我们的研究揭示了MCU在GC组织中的高表达。这种高表达与较差的T和N分期相关,并表明无病生存期较差。MCU表达与线粒体功能呈正相关,线粒体代谢,核苷酸,氨基酸,和脂肪酸合成代谢,与烟酸和烟酰胺代谢呈负相关。此外,MCU还调节线粒体氧化呼吸链的功能。MCU影响GC患者的免疫细胞并调节ROS的产生,细胞增殖,凋亡,以及胃癌细胞对铂类药物的耐药性。
    GC中MCU的高表达表明临床结果较差。单片机的表达通过影响线粒体的功能而受到影响,能量代谢,和胃癌细胞中的细胞生物合成,从而影响胃癌细胞的生长和转移。因此,MCU调控的线粒体变化可能成为GC研究和治疗的新热点。
    UNASSIGNED: The objective of this study is to elucidate the influence of MCU on the clinical pathological features of GC patients, to investigate the function and mechanism of the mitochondrial calcium uptake transporter MCU in the initiation and progression of GC, and to explore its impact on the metabolic pathways and biosynthesis of mitochondria. The ultimate goal is to identify novel targets and strategies for the clinical management of GC patients.
    UNASSIGNED: Tumor and adjacent tissue specimens were obtained from 205 patients with gastric cancer, and immunohistochemical tests were performed to assess the expression of MCU and its correlation with clinical pathological characteristics and prognosis. Data from TCGA, GTEx and GEO databases were retrieved for gastric cancer patients, and bioinformatics analysis was utilized to investigate the association between MCU expression and clinical pathological features. Furthermore, we conducted an in-depth analysis of the role of MCU in GC patients. We investigated the correlation between MCU expression in GC and its impact on mitochondrial function, metabolism, biosynthesis, and immune cells. Additionally, we studied the proteins or molecules that interact with MCU.
    UNASSIGNED: Our research revealed high expression of MCU in the GC tissues. This high expression was associated with poorer T and N staging, and indicated a worse disease-free survival period. MCU expression was positively correlated with mitochondrial function, mitochondrial metabolism, nucleotide, amino acid, and fatty acid synthesis metabolism, and negatively correlated with nicotinate and nicotinamide metabolism. Furthermore, the MCU also regulates the function of the mitochondrial oxidative respiratory chain. The MCU influences the immune cells of GC patients and regulates ROS generation, cell proliferation, apoptosis, and resistance to platinum-based drugs in gastric cancer cells.
    UNASSIGNED: High expression of MCU in GC indicates poorer clinical outcomes. The expression of the MCU are affected through impacts the function of mitochondria, energy metabolism, and cellular biosynthesis in gastric cancer cells, thereby influencing the growth and metastasis of gastric cancer cells. Therefore, the mitochondrial changes regulated by MCU could be a new focus for research and treatment of GC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体钙离子转运蛋白(MCU)在心力衰竭(HF)的能量功能障碍和肥大中的作用仍然未知。在血管紧张素II(ANGII)诱导的肥大心肌细胞中,我们已经表明肥大细胞过表达MCU并表现出生物能功能障碍。然而,通过沉默MCU,通过阻断线粒体钙超载来预防细胞肥大和线粒体功能障碍,增加线粒体活性氧,和核因子κB依赖性肥大和促炎信号的激活。此外,我们确定了一种钙/钙调蛋白非依赖性蛋白激酶II/环磷酸腺苷反应元件结合蛋白信号调节ANGII上调MCU。此外,我们发现MCU在ANGII诱导的小鼠左心室HF中上调,在HF患者的LV中,与病理性重塑有关。左心室辅助装置植入后,MCU表达式下降,提示组织可塑性调节MCU表达。
    The role of the mitochondrial calcium uniporter (MCU) in energy dysfunction and hypertrophy in heart failure (HF) remains unknown. In angiotensin II (ANGII)-induced hypertrophic cardiac cells we have shown that hypertrophic cells overexpress MCU and present bioenergetic dysfunction. However, by silencing MCU, cell hypertrophy and mitochondrial dysfunction are prevented by blocking mitochondrial calcium overload, increase mitochondrial reactive oxygen species, and activation of nuclear factor kappa B-dependent hypertrophic and proinflammatory signaling. Moreover, we identified a calcium/calmodulin-independent protein kinase II/cyclic adenosine monophosphate response element-binding protein signaling modulating MCU upregulation by ANGII. Additionally, we found upregulation of MCU in ANGII-induced left ventricular HF in mice, and in the LV of HF patients, which was correlated with pathological remodeling. Following left ventricular assist device implantation, MCU expression decreased, suggesting tissue plasticity to modulate MCU expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体钙离子转运蛋白(MCU)是摄取线粒体钙调控细胞内能量代谢的主要蛋白,包括线粒体自噬等过程。本研究研究了MCU对急性胰腺炎(AP)胰腺导管上皮细胞(PDECs)线粒体自噬的影响。正常人PDECs(HPDE6-C7)用caerulein(CAE)处理以诱导AP样变化,有或没有钌红抑制MCU。通过荧光分析线粒体膜电位(MMPs)和线粒体Ca2水平。MCU的表达水平,LC3,p62和外线粒体膜复合物亚基20(TOMM20)的转位酶,推定激酶1(PINK1),和Parkin通过蛋白质印迹和免疫荧光进行测量。通过共聚焦荧光显微镜和透射电子显微镜观察线粒体自噬。结果表明,CAE增加了MCU蛋白的表达,线粒体Ca2+水平,MMP去极化和线粒体自噬标志物包括LC3II/I比值的蛋白表达,PINK1和Parkin.CAE降低了HPDE6-C7细胞中p62和TOMM20的蛋白表达,并促进了有丝分裂体的形成。值得注意的是,这些标志物的变化通过抑制MCU而逆转。总之,激活的MCU可能通过调节APPDEC中的PINK1/Parkin通路来促进线粒体自噬。
    The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    线粒体是动态细胞器,其在形态上和功能上在不同细胞类型和亚细胞区室中是多样的,以满足独特的能量需求。在神经元中,线粒体对于支持突触和突触可塑性至关重要。然而,调节线粒体突触可塑性的机制在很大程度上是未知的。线粒体钙单质蛋白(MCU)调节钙进入线粒体,进而调节生物能学和线粒体向活跃突触的分布。有证据表明,通过MCU的钙内流将神经元活动与线粒体代谢和ATP产生耦合,这将使神经元迅速适应不断变化的能量需求。有趣的是,MCU相对于邻近的CA1或CA3远端树突独特地富含CA2远端树突,表明线粒体在分子上是不同的。然而,这种富集的功能意义尚不清楚。突触到CA2远端树突上,与CA2近端树突上的突触不同,容易经历长期增强(LTP),但不同可塑性分布的潜在机制是未知的。因此,我们研究了MCU在调节CA2远端树突的树突线粒体和突触可塑性中的作用。使用CA2特定的MCU敲除(cKO)鼠标,我们发现在CA2远端树突突触处LTP需要MCU。与对照(CTL)小鼠相比,cKO小鼠的CA2远端树突中LTP的丢失与脊柱密度降低的趋势相关。这主要见于未成熟的棘而且,与CTL小鼠相比,cKO小鼠的所有CA2树突层的线粒体明显更小,数量更多,表明线粒体片段的整体增加。破碎的线粒体可能有功能变化,例如改变ATP的产生,这也许可以解释突触可塑性的缺陷。总的来说,我们的数据表明,MCU调节CA2树突中特定层的可塑性形式,可能通过在树突内保持适当的线粒体形态和分布。不同细胞类型和回路中MCU表达的差异可能是调节线粒体对细胞质钙水平的敏感性以增强突触可塑性的一般机制。
    线粒体钙单向转运蛋白选择性调节CA2远端树突突触的可塑性。MCU-cKO在CA2远端树突中的突触处引起的LTP缺陷与脊柱密度的趋势降低相关。CA2中MCU的丢失导致树突状线粒体的超微结构变化,表明线粒体片段化增加。这些超微结构变化可能会导致功能后果,例如减少ATP的产生,这可能是可塑性缺陷的基础。
    Mitochondria are dynamic organelles that are morphologically and functionally diverse across cell types and subcellular compartments in order to meet unique energy demands. Mitochondrial dysfunction has been implicated in a wide variety of neurological disorders, including psychiatric disorders like schizophrenia and bipolar disorder. Despite it being well known that mitochondria are essential for synaptic transmission and synaptic plasticity, the mechanisms regulating mitochondria in support of normal synapse function are incompletely understood. The mitochondrial calcium uniporter (MCU) regulates calcium entry into the mitochondria, which in turn regulates the bioenergetics and distribution of mitochondria to active synapses. Evidence suggests that calcium influx via MCU couples neuronal activity to mitochondrial metabolism and ATP production, which would allow neurons to rapidly adapt to changing energy demands. Intriguingly, MCU is uniquely enriched in hippocampal CA2 distal dendrites relative to neighboring hippocampal CA1 or CA3 distal dendrites, however, the functional significance of this enrichment is not clear. Synapses from the entorhinal cortex layer II (ECII) onto CA2 distal dendrites readily express long term potentiation (LTP), unlike the LTP-resistant synapses from CA3 onto CA2 proximal dendrites, but the mechanisms underlying these different plasticity profiles are unknown. We hypothesized that enrichment of MCU near ECII-CA2 synapses promotes LTP in an otherwise plasticity-restricted cell type. Using a CA2-specific MCU knockout (cKO) mouse, we found that MCU is required for LTP at distal dendrite synapses but does not affect the lack of LTP at proximal dendrite synapses. Loss of LTP at ECII-CA2 synapses correlated with a trend for decreased spine density in CA2 distal dendrites of cKO mice compared to control (CTL) mice, which was predominantly seen in immature spines. Moreover, mitochondria were significantly smaller and more numerous across all dendritic layers of CA2 in cKO mice compared to CTL mice, suggesting an overall increase in mitochondrial fragmentation. Fragmented mitochondria might have functional changes, such as altered ATP production, that might explain a deficit in synaptic plasticity. Collectively, our data reveal that MCU regulates layer-specific forms of plasticity in CA2 dendrites, potentially by maintaining proper mitochondria morphology and distribution within dendrites. Differences in MCU expression across different cell types and circuits might be a general mechanism to tune the sensitivity of mitochondria to cytoplasmic calcium levels to power synaptic plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物新陈代谢不断变化,需要输入信号进行有效调节。线粒体钙单质蛋白(MCU)耦合细胞器和细胞质钙振荡,导致大量物种的氧化代谢调节。在拟南芥中,AtMICU基因缺失导致线粒体钙处理和超微结构改变。在这里,我们旨在进一步评估AtMICU基因缺失的后果。我们的结果证实,AtMICU保护与碳水化合物相关的细胞内钙运输,氨基酸,和植物醇代谢修饰。讨论了这种改变的含义。
    Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经血管单元(NVU)由血管细胞组成,glia,和构成血脑屏障基本组成部分的神经元。这种复杂的结构迅速调整脑血流量,以满足大脑活动的代谢需求。然而,NVU对损坏非常敏感,并且在中风后显示有限的维修。为了有效治疗中风,因此,保护和修复NVU被认为是至关重要的。线粒体钙(Ca2)的摄取通过缓冲Ca2和刺激能量产生来支持NVU功能。然而,过量的线粒体Ca2+摄取导致有毒的线粒体Ca2+过载,触发许多破坏NVU的细胞死亡途径。线粒体损伤是卒中最早的病理事件之一。因此,保持线粒体完整性和功能的药物应通过阻断许多损伤事件的开始而赋予深远的NVU保护。我们已经证明,脑中线粒体Ca2+的摄取和外排是由线粒体Ca2+单转运复合物(MCUcx)和钠/Ca2+/锂交换体(NCLX)介导的,分别。此外,我们最近的药理学研究表明,MCUcx抑制和NCLX激活通过阻断线粒体Ca2+过载来抑制缺血性和兴奋性毒性神经元细胞死亡。这些发现表明,将MCUcx抑制与NCLX激活相结合应显着保护NVU。在推广NVU修复方面,核激素受体激活是一种有前途的方法。类视黄醇X受体(RXR)和甲状腺激素受体(TR)激动剂激活刺激线粒体生物发生的互补转录程序,抑制炎症,增强新血管细胞的产生,glia,和神经元。因此,RXR和TR激动作用应通过增加NVU修复进一步改善MCUcx抑制和NCLX活化的临床益处。然而,抑制MCUcx的药物,或者刺激NCLX,或激活RXR或TR,遭受不良作用引起的健康组织。为了克服这个问题,我们描述了在缺血性或出血性卒中后优先靶向代谢受损和受损的NVU的纳米颗粒药物制剂的使用.这些基于纳米颗粒的方法具有通过最大化对患病NVU的药物递送和最小化健康脑和外周组织中的药物暴露来提高临床安全性和功效的潜力。
    The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ru360,线粒体钙摄取的选择性抑制剂,维持线粒体钙稳态。评估线粒体钙离子转运蛋白(MCU)介导的线粒体功能是否与术后认知功能障碍(POCD)的病理过程相关,阐明其与神经炎症的关系,并观察Ru360能否改善相关病理过程。
    老年小鼠在麻醉后进行实验性开腹手术。开放式现场测试,使用新颖的物体识别测试和Y迷宫测试进行行为实验。活性氧(ROS)含量,炎症细胞因子白细胞介素-1β(IL-1β)的水平,白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α),线粒体内钙,试剂盒检测小鼠海马线粒体膜电位(MMP)和抗氧化超氧化物歧化酶(SOD)活性。用Westernblot检测蛋白的表达。
    用Ru360治疗后,MCU介导的线粒体功能障碍得到抑制,神经炎症减少,手术后小鼠的学习能力得到改善。
    我们的研究表明,线粒体功能在POCD的病理学中起着至关重要的作用,应用Ru360改善线粒体功能可能是POCD治疗的一个新的必要方向。
    UNASSIGNED: Ru360, a selective inhibitor of mitochondrial calcium uptake, maintains mitochondrial calcium homeostasis. To evaluate whether mitochondrial calcium uniporter (MCU)-mediated mitochondrial function is associated with the pathological process of Postoperative cognitive dysfunction (POCD), elucidate its relationship with neuroinflammation, and observe whether the relevant pathological process can be improved with Ru360.
    UNASSIGNED: Aged mice underwent experimental open abdominal surgery after anesthesia. Open field tests, Novel object recognition tests and Y Maze Tests were used to conduct behavioral experiments. The reactive oxygen species (ROS) content, the levels of inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), intra-mitochondrial calcium, mitochondrial membrane potential (MMP) and the activity of antioxidant superoxide dismutase (SOD) in the hippocampus of mice were detected using kits. The expression of proteins was detected using Western blot.
    UNASSIGNED: After treatment with Ru360, MCU-mediated mitochondrial dysfunction was inhibited, neuroinflammation was reduced, and the learning ability of the mice was improved after surgery.
    UNASSIGNED: Our study demonstrated that mitochondrial function plays a crucial role in the pathology of POCD, and using Ru360 to improve mitochondrial function may be a new and necessary direction for the treatment of POCD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体钙单质转运蛋白(MCU)是钙(Ca2)进入神经元线粒体的主要途径。该通道与神经毒性条件下的线粒体Ca2超负荷和细胞死亡有关,但是它对正常大脑功能的生理作用仍然知之甚少。尽管MCU在兴奋性海马神经元中高表达,尚不清楚该通道是否是学习和记忆所必需的。这里,我们基因下调了海马齿状颗粒细胞(DGC)中的Mcu基因,发现这种操作增加了线粒体复合物I和II的整体呼吸活性,在电子传递链受损的情况下增加活性氧的产生。缺乏MCU的神经元的代谢重塑还涉及参与糖酵解和三羧酸循环调节的酶的表达变化,以及细胞抗氧化防御。我们发现DGC中的MCU缺乏不会改变昼夜节律,自发的探索行为,或中年小鼠(11-13个月大)的认知功能,当用食物驱动的工作记忆测试评估时,有三种选择。DGC靶向的MCU下调会显着损害8臂径向臂水迷宫评估的反转学习,但不会影响他们首次学习任务的能力。我们的结果表明,神经元MCU在记忆形成中起着重要的生理作用,并且可能是开发旨在改善衰老认知功能的干预措施的潜在治疗目标。神经退行性疾病,和脑损伤。
    The mitochondrial calcium uniporter (MCU) is the main route of calcium (Ca2+) entry into neuronal mitochondria. This channel has been linked to mitochondrial Ca2+ overload and cell death under neurotoxic conditions, but its physiologic roles for normal brain function remain poorly understood. Despite high expression of MCU in excitatory hippocampal neurons, it is unknown whether this channel is required for learning and memory. Here, we genetically down-regulated the Mcu gene in dentate granule cells (DGCs) of the hippocampus and found that this manipulation increases the overall respiratory activity of mitochondrial complexes I and II, augmenting the generation of reactive oxygen species in the context of impaired electron transport chain. The metabolic remodeling of MCU-deficient neurons also involved changes in the expression of enzymes that participate in glycolysis and the regulation of the tricarboxylic acid cycle, as well as the cellular antioxidant defenses. We found that MCU deficiency in DGCs does not change circadian rhythms, spontaneous exploratory behavior, or cognitive function in middle-aged mice (11-13 months old), when assessed with a food-motivated working memory test with three choices. DGC-targeted down-regulation of MCU significantly impairs reversal learning assessed with an 8-arm radial arm water maze but does not affect their ability to learn the task for the first time. Our results indicate that neuronal MCU plays an important physiologic role in memory formation and may be a potential therapeutic target to develop interventions aimed at improving cognitive function in aging, neurodegenerative diseases, and brain injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ca2+向线粒体的运输被认为刺激ATP的产生,心脏的战斗或逃跑反应的关键过程,但是过量的Ca2+可以引发细胞死亡。线粒体Ca2+单向转运复合物是Ca2+转运进入线粒体的主要途径,其中通道形成蛋白MCU和调节蛋白EMRE对活性至关重要。在以往的研究中,慢性Mcu或Emre缺失与急性心脏Mcu缺失在对肾上腺素能刺激和缺血/再灌注(I/R)损伤的反应中不同,尽管线粒体Ca2+快速摄取的等效失活。为了探讨这种差异之间的长期和急性的单机活动丧失,我们使用一种新的有条件的心脏特异性,比较了短期和长期Emre缺失,三苯氧胺诱导小鼠模型。在成年小鼠中短期Emre缺失(他莫昔芬后3周)后,心脏线粒体不能吸收Ca2+,基础线粒体Ca2+水平较低,并显示出减弱的Ca2诱导的ATP产生和mPTP开放。此外,在离体I/R模型中,短期EMRE损失减弱了对肾上腺素能刺激的心脏反应并改善了心脏功能的维持。然后,我们测试了成年后长期缺乏EMRE(他莫昔芬后3个月)是否会导致不同的结果。经过长期的Emre删除,线粒体Ca2+的处理和功能,以及心脏对肾上腺素能刺激的反应,与短期缺失相似。有趣的是,然而,从长期来看,对I/R损伤的保护已经丧失。这些数据表明,几个月没有单载体功能不足以恢复生物能反应,但足以恢复对I/R的敏感性。
    Transport of Ca2+ into mitochondria is thought to stimulate the production of ATP, a critical process in the heart\'s fight or flight response, but excess Ca2+ can trigger cell death. The mitochondrial Ca2+ uniporter complex is the primary route of Ca2+ transport into mitochondria, in which the channel-forming protein MCU and the regulatory protein EMRE are essential for activity. In previous studies, chronic Mcu or Emre deletion differed from acute cardiac Mcu deletion in response to adrenergic stimulation and ischemia/reperfusion (I/R) injury, despite equivalent inactivation of rapid mitochondrial Ca2+ uptake. To explore this discrepancy between chronic and acute loss of uniporter activity, we compared short-term and long-term Emre deletion using a novel conditional cardiac-specific, tamoxifen-inducible mouse model. After short-term Emre deletion (3 weeks post-tamoxifen) in adult mice, cardiac mitochondria were unable to take up Ca2+, had lower basal mitochondrial Ca2+ levels, and displayed attenuated Ca2+-induced ATP production and mPTP opening. Moreover, short-term EMRE loss blunted cardiac response to adrenergic stimulation and improved maintenance of cardiac function in an ex vivo I/R model. We then tested whether the long-term absence of EMRE (3 months post-tamoxifen) in adulthood would lead to distinct outcomes. After long-term Emre deletion, mitochondrial Ca2+ handling and function, as well as cardiac response to adrenergic stimulation, were similarly impaired as in short-term deletion. Interestingly, however, protection from I/R injury was lost in the long-term. These data suggest that several months without uniporter function are insufficient to restore bioenergetic response but are sufficient to restore susceptibility to I/R.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号