Methanosarcina

甲烷弧
  • 文章类型: Journal Article
    甲基辅酶M还原酶(MCR)催化产甲烷的最后一步,微生物代谢负责几乎所有生物甲烷排放到大气中。数十年的生化和结构研究已经产生了详细的见解MCR功能在体外,然而,对MCR和产甲烷菌生理学之间的相互作用知之甚少。例如,虽然通常认为MCR催化产甲烷的限速步骤,这没有经过明确的测试。在这项研究中,为了更直接地了解MCR对甲烷藻生长的控制,我们产生了一个在染色体上具有可诱导的mcr操纵子的菌株,允许仔细控制MCR表达。我们表明,MCR在底物充足的分批培养中不限制生长速率。然而,通过仔细滴定MCR表达,可以获得生长限制状态。经历MCR限制的M.activorans的转录组学分析揭示了具有跨不同功能类别的数百个差异表达基因的全球反应。值得注意的是,MCR限制导致甲硫醚甲基转移酶的强诱导,可能是由于代谢中间体回收不足。此外,mcr操纵子不受转录调节,即,它是组成型表达的,这表明,当细胞经历营养限制或应激条件时,MCR的过量可能是有益的。总之,我们表明,有一个广泛的细胞MCR浓度,可以维持最佳的生长,这表明其他因素,如合成代谢反应,可能是产甲烷生长的限速因素。
    目的:甲烷是一种强效的温室气体,25%的全球变暖在后工业时代。大气中的甲烷主要来源于生物,主要由称为产甲烷菌的微生物产生。甲基辅酶M还原酶(MCR)催化产甲烷菌中的甲烷形成。即使MCR包含ca.10%的细胞蛋白质组,据推测,在产甲烷过程中,它是生长受限的。在这项研究中,我们表明,在底物重复分批培养中生长的甲烷气细胞产生的MCR比其细胞对最佳生长的需求更多。本研究中概述的工具可用于以比纯蛋白质的分离和生化表征更高通量的方式完善MCR中甲烷生成和测定病变的代谢模型。
    Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis, the microbial metabolism responsible for nearly all biological methane emissions to the atmosphere. Decades of biochemical and structural research studies have generated detailed insights into MCR function in vitro, yet very little is known about the interplay between MCR and methanogen physiology. For instance, while it is routinely stated that MCR catalyzes the rate-limiting step of methanogenesis, this has not been categorically tested. In this study, to gain a more direct understanding of MCR\'s control on the growth of Methanosarcina acetivorans, we generate a strain with an inducible mcr operon on the chromosome, allowing for careful control of MCR expression. We show that MCR is not growth rate-limiting in substrate-replete batch cultures. However, through careful titration of MCR expression, growth-limiting state(s) can be obtained. Transcriptomic analysis of M. acetivorans experiencing MCR limitation reveals a global response with hundreds of differentially expressed genes across diverse functional categories. Notably, MCR limitation leads to strong induction of methylsulfide methyltransferases, likely due to insufficient recycling of metabolic intermediates. In addition, the mcr operon is not transcriptionally regulated, i.e., it is constitutively expressed, suggesting that the overabundance of MCR might be beneficial when cells experience nutrient limitation or stressful conditions. Altogether, we show that there is a wide range of cellular MCR concentrations that can sustain optimal growth, suggesting that other factors such as anabolic reactions might be rate-limiting for methanogenic growth.
    OBJECTIVE: Methane is a potent greenhouse gas that has contributed to ca. 25% of global warming in the post-industrial era. Atmospheric methane is primarily of biogenic origin, mostly produced by microorganisms called methanogens. Methyl-coenzyme M reductase (MCR) catalyzes methane formatio in methanogens. Even though MCR comprises ca. 10% of the cellular proteome, it is hypothesized to be growth-limiting during methanogenesis. In this study, we show that Methanosarcina acetivorans cells grown in substrate-replicate batch cultures produce more MCR than its cellular demand for optimal growth. The tools outlined in this study can be used to refine metabolic models of methanogenesis and assay lesions in MCR in a higher-throughput manner than isolation and biochemical characterization of pure protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲基辅酶M还原酶(MCR)是甲烷生物地球化学的核心参与者,控制产甲烷菌和厌氧甲烷菌(ANME)中的甲烷生成和甲烷厌氧氧化(AOM),分别。MCR的辅基是辅酶F430,一种含镍的四氢皮质蛋白。已经发现了F430的几个修改版本,包括ANME-1MCR使用的172-甲硫基-F430(mtF430)。这里,我们采用分子动力学(MD)模拟来研究与标准F430结合时,甲烷甲烷和ANME-1的MCR的活性位点动力学,与172-硫醚辅酶F430变体和底物(甲基辅酶M和辅酶B)形成甲烷相比。我们的模拟强调了Gln到Val取代在适应ANME-1MCR中的172甲硫基修饰中的重要性。172位置的修饰破坏了M.acetimoransMCR中的规范底物定位。然而,在一些重复中,活性位点重组以维持底物定位表明修饰的F430变体可以容纳在产甲烷MCR中。我们还报告了MCR固有电场的第一个定量估计,这对驱动甲烷形成至关重要。我们的结果表明,沿着CH3-S-CoM硫醚键对齐的电场促进了均裂键的裂解,与提出的催化机理相吻合。结构扰动,然而,削弱和错位这些电场,强调活性位点结构在保持其完整性方面的重要性。总之,我们的结果加深了对MCR活跃场地动力学的理解,酶在催化本征电场中的组织作用,以及活性位点结构和静电之间的相互作用。
    Methyl-coenzyme M reductase (MCR) is a central player in methane biogeochemistry, governing methanogenesis and the anaerobic oxidation of methane (AOM) in methanogens and anaerobic methanotrophs (ANME), respectively. The prosthetic group of MCR is coenzyme F430, a nickel-containing tetrahydrocorphin. Several modified versions of F430 have been discovered, including the 172-methylthio-F430 (mtF430) used by ANME-1 MCR. Here, we employ molecular dynamics (MD) simulations to investigate the active site dynamics of MCR from Methanosarcina acetivorans and ANME-1 when bound to the canonical F430 compared to 172-thioether coenzyme F430 variants and substrates (methyl-coenzyme M and coenzyme B) for methane formation. Our simulations highlight the importance of the Gln to Val substitution in accommodating the 172 methylthio modification in ANME-1 MCR. Modifications at the 172 position disrupt the canonical substrate positioning in M. acetivorans MCR. However, in some replicates, active site reorganization to maintain substrate positioning suggests that the modified F430 variants could be accommodated in a methanogenic MCR. We additionally report the first quantitative estimate of MCR intrinsic electric fields that are pivotal in driving methane formation. Our results suggest that the electric field aligned along the CH3-S-CoM thioether bond facilitates homolytic bond cleavage, coinciding with the proposed catalytic mechanism. Structural perturbations, however, weaken and misalign these electric fields, emphasizing the importance of the active site structure in maintaining their integrity. In conclusion, our results deepen the understanding of MCR active site dynamics, the enzyme\'s organizational role in intrinsic electric fields for catalysis, and the interplay between active site structure and electrostatics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在产甲烷环境中,直接的种间电子转移(DIET)可能是最重要的。但是迄今为止,对DIET的机理研究主要集中在以富马酸酯为末端电子受体的共培养上。为了更好地了解使用产甲烷菌的饮食,将还原富马酸G.硫还原菌在基于DIET的生长过程中的金属还原菌的转录组与在与多种甲烷共培养中生长的金属还原菌进行了比较。与硫还原G.共培养的金属还原G.的转录组与甲烷的转录组明显不同。此外,用甲烷弧菌生长的金属还原菌的转录组,缺乏外表面c型细胞色素,与与M.acetivorans或M.subterranea共培养的G.metallireducens不同,具有外表面c型细胞色素,可作为DIET的电连接。涉及细胞外电子转移的基因的金属还原G.与c型细胞色素缺失突变株共培养,△Gmet_0930、△Gmet_0557和△Gmet_2896从未与硫还原G.一起建立,但适应于与所有三种甲烷核菌一起生长。两种孔蛋白-细胞色素复合物,PccF和PccG,对饮食很重要;然而,PccG对甲烷藻的生长更为重要。与硫还原菌和M.acetivorans共培养不同,与M.barkeri一起生长不需要导电菌毛。Shewanellaoneidensis,另一种具有丰富外表面c型细胞色素的电活性微生物,没有通过饮食生长。结果表明,外表面c型细胞色素的存在并不一定赋予DIET的能力,并强调了电子接受伴侣对供电子DIET伴侣的生理学的影响。
    Direct interspecies electron transfer (DIET) may be most important in methanogenic environments, but mechanistic studies of DIET to date have primarily focused on cocultures in which fumarate was the terminal electron acceptor. To better understand DIET with methanogens, the transcriptome of Geobacter metallireducens during DIET-based growth with G. sulfurreducens reducing fumarate was compared with G. metallireducens grown in coculture with diverse Methanosarcina. The transcriptome of G. metallireducens cocultured with G. sulfurreducens was significantly different from those with Methanosarcina. Furthermore, the transcriptome of G. metallireducens grown with Methanosarcina barkeri, which lacks outer-surface c-type cytochromes, differed from those of G. metallireducens cocultured with M. acetivorans or M. subterranea, which have an outer-surface c-type cytochrome that serves as an electrical connect for DIET. Differences in G. metallireducens expression patterns for genes involved in extracellular electron transfer were particularly notable. Cocultures with c-type cytochrome deletion mutant strains, ∆Gmet_0930, ∆Gmet_0557 and ∆Gmet_2896, never became established with G. sulfurreducens but adapted to grow with all three Methanosarcina. Two porin-cytochrome complexes, PccF and PccG, were important for DIET; however, PccG was more important for growth with Methanosarcina. Unlike cocultures with G. sulfurreducens and M. acetivorans, electrically conductive pili were not needed for growth with M. barkeri. Shewanella oneidensis, another electroactive microbe with abundant outer-surface c-type cytochromes, did not grow via DIET. The results demonstrate that the presence of outer-surface c-type cytochromes does not necessarily confer the capacity for DIET and emphasize the impact of the electron-accepting partner on the physiology of the electron-donating DIET partner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硫氧还蛋白还原酶(TrxR)激活硫氧还蛋白(Trx),其调节原核生物和真核生物所必需的多种靶蛋白的活性。然而,对来自古菌(产甲烷菌)领域的产甲烷微生物中的TrxR/Trx系统和氧化还原控制知之甚少,其中基因组丰富,具有铁氧还蛋白的注释:来自广泛的FTR样家族第4组的硫氧还蛋白还原酶[Fdx/硫氧还蛋白还原酶(FTR)]。仅表征了来自FTR样家族的两个:来自第1组的植物型FTR和来自第6组的FDR。在这里,来自甲烷杆菌的第4组原型(AFTR)的特征是增进对产甲烷菌家族和TrxR/Trx系统的理解。AFTR的建模结构,连同EPR和Mössbauer光谱,支持类似于植物型FTR和FDR的催化机理,尽管有重要的例外。还原的AFTR的EPR光谱鉴定出瞬态[4Fe-4S]1簇,表现出S=7/2和典型的S=1/2信号的混合,虽然含有[4Fe-4S]簇的蛋白质很少见,它很可能是二硫化物还原中的中间途径。此外,发现与植物型FTR和FDR活性必需的残基等效的活性位点组氨酸对于AFTR是不必要的。最后,从AFTR重建了一个独特的硫氧还蛋白系统,铁氧还蛋白,和来自M.acetivorans的Trx2,为此,确定了对生长和其他多样化代谢至关重要的特定靶蛋白。
    Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    产甲烷菌是古细菌的一个多样化的群体,它们必须将节能与甲烷的生产联系起来。一些产甲烷菌编码能量守恒的替代途径,比如无氧呼吸,但是这个过程的生化细节是未知的。我们表明,来自甲烷甲烷的多血红素c型细胞色素MmcA对于产甲烷过程中的细胞内电子传输很重要,并且还可以减少细胞外电子受体,例如可溶性Fe3和蒽醌-2,6-二磺酸盐。与这些观察结果一致,相对于SHE,MmcA显示范围从-100到-450mV的可逆氧化还原特征。此外,缺乏mmcA的突变体具有显著较慢的Fe3+还原速率。mmcA基因座在Methanosarcinales的成员中普遍存在,并且是与八血红素四硫氨酸还原酶密切相关的多血红素细胞色素的不同进化枝的一部分。一起来看,MmcA可能充当电子导管,可以潜在地支持各种超越产甲烷的节能策略。
    Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Video-Audio Media
    背景:生物聚合物厌氧分解的最后一步是产甲烷。稻田土壤是甲烷的主要人为来源,稻草通常用作水稻种植中的肥料。这里,我们旨在破译产甲烷群落在菲律宾稻田的长期缺氧孵化(120天)过程中对稻草添加的结构和功能响应。该研究结合了过程测量,特定生物标志物的定量实时PCR和RT-PCR(16SrRNA,mcrA),和元组学(环境基因组学和转录组学)。
    结果:分析方法共同揭示了两个主要的细菌和产甲烷活动阶段:早期(第7至21天)和晚期(第28至60天)社区反应,通过微生物基因和转录本丰度以及CH4生产率的显着瞬时下降而分开。两个产甲烷活性阶段对应于甲烷科的最大rRNA和mRNA丰度,但表达的产甲烷途径不同。虽然在早期活动阶段,三个遗传上不同的甲烷杆菌属种群促进了乙酸碎屑甲烷生成,后期活动阶段由单个甲烷弧菌基因组进行的甲基营养甲烷生成定义。与甲烷紧密相关。MSH10X1,将环境转录本映射到宏基因组组装的基因组(MAGs)和特定于种群的参考基因组上,揭示了该基因组物种是乙酰分解和甲基营养甲烷生成的关键参与者。厌氧食物网是由复杂的细菌群落驱动的,地细菌科和Peptococaceae被认为是与甲烷藻功能相互作用的候选者。甲烷科的成员是氢营养甲烷生成的关键参与者,只有在非常晚的社区反应中才能检测到甲烷科成员的切屑活性。
    结论:单个甲烷杆菌属物种对乙酰碎屑和甲基营养甲烷生成的主要但时移表达代表了一个新发现,扩展了我们迄今为止对稻田土壤中高表达的甲烷生成途径的认识。视频摘要。
    BACKGROUND: The final step in the anaerobic decomposition of biopolymers is methanogenesis. Rice field soils are a major anthropogenic source of methane, with straw commonly used as a fertilizer in rice farming. Here, we aimed to decipher the structural and functional responses of the methanogenic community to rice straw addition during an extended anoxic incubation (120 days) of Philippine paddy soil. The research combined process measurements, quantitative real-time PCR and RT-PCR of particular biomarkers (16S rRNA, mcrA), and meta-omics (environmental genomics and transcriptomics).
    RESULTS: The analysis methods collectively revealed two major bacterial and methanogenic activity phases: early (days 7 to 21) and late (days 28 to 60) community responses, separated by a significant transient decline in microbial gene and transcript abundances and CH4 production rate. The two methanogenic activity phases corresponded to the greatest rRNA and mRNA abundances of the Methanosarcinaceae but differed in the methanogenic pathways expressed. While three genetically distinct Methanosarcina populations contributed to acetoclastic methanogenesis during the early activity phase, the late activity phase was defined by methylotrophic methanogenesis performed by a single Methanosarcina genomospecies. Closely related to Methanosarcina sp. MSH10X1, mapping of environmental transcripts onto metagenome-assembled genomes (MAGs) and population-specific reference genomes revealed this genomospecies as the key player in acetoclastic and methylotrophic methanogenesis. The anaerobic food web was driven by a complex bacterial community, with Geobacteraceae and Peptococcaceae being putative candidates for a functional interplay with Methanosarcina. Members of the Methanocellaceae were the key players in hydrogenotrophic methanogenesis, while the acetoclastic activity of Methanotrichaceae members was detectable only during the very late community response.
    CONCLUSIONS: The predominant but time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies represents a novel finding that expands our hitherto knowledge of the methanogenic pathways being highly expressed in paddy soils. Video Abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲烷生成是厌氧生物质降解过程中的关键步骤。产甲烷古细菌(产甲烷菌)是唯一将产甲烷底物转化与能量守恒相结合的生物。产甲烷菌利用的底物范围有限,乙酸盐和H2+CO2是生态上最相关的。唯一含有比乙酸盐更多碳-碳键的单一产甲烷能量底物是丙酮酸盐。只有聚集体形成,淡水产甲烷菌甲烷酸杆菌BarkeriFusaro被证明可以在该化合物上生长。这里,单细胞的丙酮酸利用能力,解决了海洋甲烷甲烷中毒。强大的丙酮酸依赖性,产甲烷,可以通过从生长培养基中省略CO2来建立生长。与丙酮酸浓度无关的生长速率表明,醋酸M.acetivorans主动将丙酮酸移位穿过细胞质膜。当2-溴乙烷磺酸盐(BES)抑制甲烷生成超过99%时,丙酮酸依赖性生长是产乙酸和持续的。然而,当甲烷生成被完全抑制时。代谢产物的分析表明,受BES抑制的M.acetivorans将乙酸生成用作丙酮酸氧化产生的电子的汇,到目前为止身份不明,产生代谢物。重要性产甲烷生长底物的已知范围非常有限,并且M.acetivorans仅是证明在丙酮酸上生长的第二种产甲烷物种。除了一些共同点,对M.acetivorans的分析强调了甲烷甲烷物种之间丙酮酸代谢的差异。发现M.acetivorans可能积极进口丙酮酸盐,这表明可能低估了产甲烷菌异养分解代谢的能力。M.acetivorans在丙酮酸上的主要产乙酸生长以及对产甲烷的抑制证实了产甲烷古细菌的能量守恒可能与甲烷的形成无关。
    Methanogenesis is a key step during anaerobic biomass degradation. Methanogenic archaea (methanogens) are the only organisms coupling methanogenic substrate conversion to energy conservation. The range of substrates utilized by methanogens is limited, with acetate and H2+CO2 being the ecologically most relevant. The only single methanogenic energy substrate containing more carbon-carbon bonds than acetate is pyruvate. Only the aggregate-forming, freshwater methanogen Methanosarcina barkeri Fusaro was shown to grow on this compound. Here, the pyruvate-utilizing capabilities of the single-celled, marine Methanosarcina acetivorans were addressed. Robust pyruvate-dependent, methanogenic, growth could be established by omitting CO2 from the growth medium. Growth rates which were independent of the pyruvate concentration indicated that M. acetivorans actively translocates pyruvate across the cytoplasmic membrane. When 2-bromoethanesulfonate (BES) inhibited methanogenesis to more than 99%, pyruvate-dependent growth was acetogenic and sustained. However, when methanogenesis was completely inhibited M. acetivorans did not grow on pyruvate. Analysis of metabolites showed that acetogenesis is used by BES-inhibited M. acetivorans as a sink for electrons derived from pyruvate oxidation and that other, thus far unidentified, metabolites are produced.IMPORTANCEThe known range of methanogenic growth substrates is very limited and M. acetivorans is only the second methanogenic species for which growth on pyruvate is demonstrated. Besides some commonalities, analysis of M. acetivorans highlights differences in pyruvate metabolism among Methanosarcina species. The observation that M. acetivorans probably imports pyruvate actively indicates that the capabilities for heterotrophic catabolism in methanogens may be underestimated. The mostly acetogenic growth of M. acetivorans on pyruvate with concomitant inhibition of methanogenesis confirms that energy conservation of methanogenic archaea can be independent of methane formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    产甲烷古细菌与光催化剂的整合为太阳能驱动的产甲烷提供了可持续的解决方案。然而,由于固有的能量守恒和严格限制的产甲烷古细菌底物,使CH4转化效率最大化仍然具有挑战性。这里,我们报告了一种太阳能驱动的生物-非生物混合(生物混合)系统,通过将硫化镉(CdS)纳米颗粒与合理设计的产甲烷古细菌甲烷甲烷气C2A,其中葡萄糖增效剂蛋白和葡萄糖激酶,一种从运动发酵单胞菌运输和磷酸化葡萄糖的节能途径,实施以促进非天然底物葡萄糖用于甲烷生成。我们证明了光激发电子促进膜结合电子传输链,从而增强跨膜的Na+和H+离子梯度以增强三磷酸腺苷(ATP)合成。此外,这种生物混合系统促进丙酮酸代谢为乙酰辅酶A(AcCoA),并抑制AcCoA流向三羧酸(TCA)循环,导致从葡萄糖衍生的碳产生的CH4增加1.26倍。我们的结果为通过合理的生物混合设计和重新编程增强甲烷生成提供了独特的策略,这为可持续制造增值化学品提供了一条有希望的途径。
    Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号