Iron (hydr)oxides

铁 (氢) 氧化物
  • 文章类型: Journal Article
    长期的生产实践证明,好的白酒是从老窖里出来的,陈酿泥对浓香型白酒的质量至关重要。X射线衍射,傅里叶变换离子回旋共振质谱,采用红外光谱技术研究了2年含铁矿物和溶解性有机质(DOM)的组成特征,40年,以及泸州老窖酒厂100年的坑泥和黄壤(制作坑泥的原料)。结果表明,全铁和结晶铁矿物的含量显著降低,随着细胞年龄的增加,Fe(II)/Fe(III)的比值和无定形铁(hydr)氧化物的含量显着增加。DOM丰富,不饱和度,和芳香性,以及木质素/酚类物质,多酚,和多环芳烃比率,在坑泥中增强。主成分分析结果表明,坑泥中含铁矿物的形态和含量的变化与DOM分子组分的变化显著相关,这主要归因于无定形铁(氢)氧化物和结晶铁矿物对DOM组分的亲和力不同。该研究对于了解窖泥老化过程中含铁矿物和DOM的演化规律及其相互作用具有重要意义,为进一步了解窖泥老化对浓香型白酒生产的影响提供了新途径。
    Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate the composition characteristics of iron-bearing minerals and dissolved organic matter (DOM) in 2-year, 40-year, and 100-year pit mud and yellow soil (raw materials for making pit mud) of Luzhou Laojiao distillery. The results showed that the contents of total iron and crystalline iron minerals decreased significantly, while the ratio of Fe(II)/Fe(III) and the content of amorphous iron (hydr)oxides increased significantly with increasing cellar age. DOM richness, unsaturation, and aromaticity, as well as lignin/phenolics, polyphenols, and polycyclic aromatics ratios, were enhanced in pit mud. The results of the principal component analysis indicate that changes in the morphology and content of iron-bearing minerals in pit mud were significantly correlated with the changes in DOM molecular components, which is mainly attributed to the different affinities of amorphous iron (hydr)oxides and crystalline iron minerals for the DOM components. The study is important for understanding the evolution pattern of iron-bearing minerals and DOM and their interactions during the aging of pit mud and provides a new way to further understand the influence of aged pit mud on Luzhou-flavor liquor production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Diphenylarsinic acid (DPAA) is an organoarsenic compound derived from abandoned chemical weapons. DPAA sorption by iron (hydr)oxides is of considerable importance but remains largely unexplored. The current study aimed at investigating the sorption mechanisms of DPAA on ferrihydrite, goethite and hematite using both macroscopic sorption kinetics and sequential extraction procedure (SEP) as well as microscopic Fourier transformed infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopic techniques. Sorption kinetics studies show that >93% of added DPAA (4-100 mg L-1) was sorbed on ferrihydrite and hematite within 5 min, while only 84% of added DPAA (100 mg L-1) was sorbed on goethite after 24 h. The sequential extraction results and FTIR measurements reveal that DPAA formed simultaneously inner- and outer-sphere complexes on goethite and hematite, but predominantly inner-sphere complexes on ferrihydrite with limited formation of outer-sphere complexes (<15%). A combination of SEP, FTIR and EXAFS techniques further enables identification of the interfacial reactions between DPAA and solid surfaces of iron (hydr)oxides and the mechanisms involved. Results indicate that DPAA interacted with these iron (hydr)oxides via (1) electrostatic attraction or hydrogen bonding, (2) surface complexation and (3) complexation embedded inside the mineral particles. EXAFS studies further demonstrate that DPAA formed mainly bidentate binuclear corner-sharing (2C) complexes regardless of the iron substrate, with As-Fe distances at 3.19-3.32 Å. Comparison of these results with available data in the literature on inorganic, methyl and phenyl arsenics (As) suggests that it is the phenyl group substitution that finally determines the predominance of 2C complexes. Results from the present study will improve our knowledge of DPAA interaction with solid surfaces and may help in the prediction of the environmental fate and environmental risk management of DPAA in the soil-water system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Arsenic mobility in soils, sediments and groundwater systems is strongly controlled by adsorption occurring at iron oxide/water interfaces, and the extent of this adsorption may be influenced by the presence of natural organic matter (NOM). This study aims to investigate the adsorption of As(III) and As(V) onto coprecipitates made with ferrihydrite (Fh) and humic acid (HA) with two organic carbon (OC) loadings of 5 and 15 wt% OC. We show that the coprecipitation of HA with Fh can significantly reduce the retention of both As(III) and As(V) over a wide pH range (4-11), and with increased OC loading, there is reduced arsenic adsorption. On pure Fh, As(III) is adsorbed to a greater extent than As(V) at pH > 6.5 (the crossover pH), whereas the crossover pH shifts to more acidic pH in the presence of HA, implying that the binding of As(III) is more favorable than As(V) in the presence of NOM. Both As(III) and As(V) are complexed with the ferric hydroxyl functional groups, and no ternary Fh-HA-As complexes are detected. We observe that ∼40% of the adsorbed As(III) is oxidized to As(V) on pure Fh, compared to only ∼29% of As(III) oxidation on the Fh-HA coprecipitate, indicating that NOM hinders As(III) oxidation on iron (hydr)oxide. The results of this study suggest that NOM interacts with arsenic in ways that promote arsenic mobility and especially promote the mobility of arsenate relative to arsenite, which is of great significance for evaluating the migration and bioavailability of arsenic in both natural and contaminated environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号