Gene banks

  • 文章类型: Journal Article
    背景:在常规条件下,难以干燥和冻结温度的种子不能储存在基因库中。然而,某些顽固种子物种的种质可以存储在液氮(-196°C)中。不幸的是,对于许多物种来说,其中几乎是整个钉螺属,一种有效的冷冻保存方法仍然未知。在这项研究中,我们提出了一种成功的冷冻存储协议(Matt。)利伯。使用在铝低温板上冷冻的羽毛(胚胎的茎尖分生组织)的种质。结果:从10个种源的橡子中分离出的羽状体预先储存在0.5M蔗糖溶液中(18h)。为了形成藻酸盐珠(每个珠一个小珠),将管形管置于低温板的孔中,并包埋在海藻酸钙凝胶中。对于冷冻保护,在25°C下,将包封的管体浸入含有2.0M甘油和不同浓度的蔗糖(0.8-1.2M)的冷冻保护剂溶液中40分钟,并在层流柜下干燥1.0-4.0小时。将带有管体的冷冻板直接浸入液氮中,然后冷冻保存30分钟。为了复温,将具有管形的低温板浸入1.0M蔗糖溶液中,并在25°C下再水化15分钟。在1.0M蔗糖溶液中冷冻保护并干燥2h后,成活率从25.8到83.4不等。冷冻保存的烟羽的体外再生长率因种源而异,为26-77%。结论:本研究提出,第一次,一个成功的,可用于基因库的Q.petraea种质的冷冻保存简单有效的方案。该实验成功地重复了来自各种来源的种子,每个产生相似的,良好的结果。然而,种子质量和收获后的储存时间是冷冻保存后胚珠再生的重要因素。
    BACKGROUND QUERCUS: seeds that are recalcitrant to desiccation and freezing temperatures cannot be stored in gene banks under conventional conditions. However, the germplasm of some recalcitrant seeded species can be stored in liquid nitrogen (-196 °C). Unfortunately, for many species, among them for almost the whole genus Quercus, an effective cryostorage method is still unknown. In this study, we propose a successful cryostorage protocol for Quercus petraea (Matt.) Liebl. germplasm using plumules (a shoot apical meristem of an embryo) frozen on aluminium cryo-plates. RESULTS: The plumules isolated from the acorns of ten provenances were prestored in 0.5 M sucrose solution (for 18 h). To form alginate beads (one plumule per bead), the plumules were placed in the wells of a cryo-plate and embedded in calcium alginate gel. For cryoprotection, the encapsulated plumules were immersed in cryoprotectant solution containing 2.0 M glycerol and different concentrations of sucrose (0.8-1.2 M) for 40 min at 25 °C and desiccated under a laminar flow cabinet for 1.0-4.0 h. Cryo-plates with plumules were directly immersed in liquid nitrogen and then cryostored for 30 min. For rewarming, cryo-plates with plumules were immersed in 1.0 M sucrose solution and rehydrated for 15 min at 25 °C. Survival rates varied from 25.8 to 83.4 were achieved after cryoprotection in 1.0 M sucrose solution and the drying of plumules for 2 h. The in vitro regrowth rate of cryopreserved plumules varied among provenances and was 26-77%. CONCLUSIONS: This study presents, for the first time, a successful, simple and effective protocol for the cryopreservation of Q. petraea germplasm that could be used in gene banks. The experiment was successfully repeated on seeds from various provenances, each yielding similar, good results. However, seed quality and storage time after harvesting are important factors in plumule regrowth after cryopreservation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    利用创新工具加快繁殖速度,并从地方品种中发现适应的基因型来源,作物野生近亲,孤儿作物是促进豆类和谷物等一年生作物非生物胁迫耐受性遗传获得的关键先决条件,尽管主要作物取得了进展,但其中许多仍然是孤儿。这里,我们看了一部小说,在新研究领域的范式下,将生态气候数据与进化基因组学相结合的跨学科方法:基因组-环境关联(GEA)。我们首先举例说明GEA如何利用来自基因型表征的原位地理参考,基因库的加入,以查明自然选择的基因组特征。我们稍后讨论了更新当前GEA模型的必要性,以使用机械生态生理气候指数和前沿GWAS型遗传关联模型来预测基于区域和局部或微观栖息地的适应。此外,为了解释多基因进化适应,我们鼓励社区开始为基因组预测(GP)和多维机器学习(ML)模型收集基因组估计自适应值(GEAV).理想情况下,后两者应通过基于从头GWAS的GEA估计进行加权,并针对可扩展的标记子集进行优化。我们通过设想通过合并高分辨率数据源使适应推断更加稳健的途径来结束审查,例如环境遥感和基因组位点频谱的汇总统计,具有表观遗传分子功能,负责野外塑料遗传。最终,我们认为,将进化适应性预测与GEA等生态基因组学创新相结合,将有助于基于作物种质资源捕获对非生物胁迫的隐藏遗传适应性,以帮助应对气候变化。“我将努力找出大自然的力量是如何相互作用的,以及地理环境对动植物的影响。总之,我必须找出大自然中的和谐\“亚历山大·冯·洪堡-给卡尔·弗赖斯勒本的信,1799年6月
    Leveraging innovative tools to speed up prebreeding and discovery of genotypic sources of adaptation from landraces, crop wild relatives, and orphan crops is a key prerequisite to accelerate genetic gain of abiotic stress tolerance in annual crops such as legumes and cereals, many of which are still orphan species despite advances in major row crops. Here, we review a novel, interdisciplinary approach to combine ecological climate data with evolutionary genomics under the paradigm of a new field of study: genome-environment associations (GEAs). We first exemplify how GEA utilizes in situ georeferencing from genotypically characterized, gene bank accessions to pinpoint genomic signatures of natural selection. We later discuss the necessity to update the current GEA models to predict both regional- and local- or micro-habitat-based adaptation with mechanistic ecophysiological climate indices and cutting-edge GWAS-type genetic association models. Furthermore, to account for polygenic evolutionary adaptation, we encourage the community to start gathering genomic estimated adaptive values (GEAVs) for genomic prediction (GP) and multi-dimensional machine learning (ML) models. The latter two should ideally be weighted by de novo GWAS-based GEA estimates and optimized for a scalable marker subset. We end the review by envisioning avenues to make adaptation inferences more robust through the merging of high-resolution data sources, such as environmental remote sensing and summary statistics of the genomic site frequency spectrum, with the epigenetic molecular functionality responsible for plastic inheritance in the wild. Ultimately, we believe that coupling evolutionary adaptive predictions with innovations in ecological genomics such as GEA will help capture hidden genetic adaptations to abiotic stresses based on crop germplasm resources to assist responses to climate change. \"I shall endeavor to find out how nature\'s forces act upon one another, and in what manner the geographic environment exerts its influence on animals and plants. In short, I must find out about the harmony in nature\" Alexander von Humboldt-Letter to Karl Freiesleben, June 1799.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多环境和内源因素影响自然种群的遗传多样性水平。遗传变异是物种进化和适应的基石。然而,目前,由于人为和气候变化,越来越多的植物物种和当地品种(地方品种)濒临灭绝。为了将来的育种计划,必须保存它们。已经在世界范围内创建了基因库以保护具有文化和经济重要性的不同植物物种。他们中的许多应用冷冻保存,一种保存方法,其中使用超低温(-135°C至-196°C)长期保存组织样品,几乎没有变异发生的风险。当通过去除水和形成所谓的生物玻璃(玻璃化)来减轻冰晶形成和生长的不利影响时,可以将细胞成功地冷冻保存在液氮(LN)中。这种状态可以通过几种方式实现。关键的冷调节基因和蛋白质参与植物组织中耐寒性的获得可能会另外改善LN储存的外植体的存活。本综述解释了低温贮藏在农学中的重要性,并概述了使用该策略完成的最新工作。最广泛使用的冷冻保存技术,经典和现代的冷冻保护剂,和一些应用于作物的协议被认为是了解哪些参数提供了建立高质量和广泛适用的冷冻保存。注意力也集中在植物低温生物学中的遗传完整性和功能基因组学问题上。
    Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Plant genetic resources (PGR) are the foundation of agriculture as well as food and nutritional security. The ICAR-NBPGR is the nodal institution at national level for management of PGR in India under the umbrella of Indian Council of Agricultural Research (ICAR), New Delhi. India being one of the gene-rich countries faces a unique challenge of protecting its natural heritage while evolving mutually beneficial strategies for germplasm exchange with other countries. The Bureaus activities include PGR exploration, collection, exchange, characterization, evaluation, conservation and documentation. It also has the responsibility to carry out quarantine of all imported PGR including transgenics meant for research purposes. The multifarious activities are carried out from ICAR-NBPGR headquarters and its 10 regional stations located in different agro-climatic zones of India. It has linkages with international organizations of the Consultative Group on International Agricultural Research (CGIAR) and national crop-based institutes to accomplish its mandated activities. NBPGR collects and acquires germplasm from various sources, conserves it in the Genebank, characterizes and evaluates it for different traits and provides ready material for breeders to develop varieties for farmers. ICAR-NBPGR encompasses the National Genebank Network and at present, the National Genebank conserves more than 0.40 million accessions. NBPGR works in service-mode for effective utilization of PGR in crop improvement programmes which depends mainly on its systematic characterization and evaluation, and identification of potentially useful germplasm. NBPGR is responsible for identifying trait-specific pre-adapted climate resilient genotypes, promising material with disease resistance and quality traits which the breeders use for various crop improvement programmes. The system has contributed immensely towards safeguarding the indigenous and introducing useful exotic PGR for enhancing the agricultural production. Presently, our focus is on characterization of ex situ conserved germplasm and detailed evaluation of prioritized crops for enhanced utilization; assessment of impact of on-farm conservation practices on genetic diversity; genome-wide association mapping for identification of novel genes and alleles for enhanced utilization of PGR; identification and deployment of germplasm/landraces using climate analog data; validation of trait-specific introduced germplasm for enhanced utilization. Key words: plant genetic resources; gene banks; wild relatives; biotic and abiotic stresses; marker-assisted selection.
    Генетические ресурсы растений – основа сельского хозяйства и главный фактор, определяющий качество потребляемой пищи. В Индии на национальном уровне этой проблемой занимается Национальное бюро генетических ресурсов растений (NBPGR), действующее под эгидой Индийского совета по сельскохозяйственным исследованиям (ICAR), со штаб-квартирой в Нью-Дели. Обладая богатыми растительными ресурсами, Индия должна учитывать интересы безопасности своего природного наследия при выработке даже самых выгодных стратегий обмена генетическим материалом со своими международными партнерами. В задачи Бюро входят исследование, сбор, обмен, описание, оценка, сохранение и учет генетических ресурсов растений, а также обеспечение карантинных мер для всего ввозимого из-за рубежа материала, включая трансгенные растения, предназначенные для исследовательских целей. Бюро и десять его региональных отделений, расположенных в разных агроклиматических зонах страны, осуществляют деятельность в нескольких направлениях. Поддерживают связи с международными организациями, входящими в состав Консультативной группы по международным сельскохозяйственным исследованиям(CGIAR), и национальными институтами, занимающимися проблемами сельскохозяйственных культур. Образцы генофонда из самых разных источников пополняют генбанк, где проводится их описание и оценка по заданным признакам. На основе этого материала выводятся сорта сельскохозяйственных культур. Су- ществующий при Бюро Национальный генетический банк (National Genebank Network) насчитывает более 400 тысяч образцов. Бюро работает в сервисном режиме, обеспечивая эффективное использование гене- тических ресурсов растений в программах улучшения сельскохозяйственных культур, что стало возмож- ным во многом благодаря последовательному подходу к описанию и оценке этих ресурсов, а также отбору потенциально полезного генетического материала. Другими задачами являются определение генотипов с теми или иными признаками, специфичными к изменению климата, а также отбор перспективного мате- риала, обладающего устойчивостью к заболеваниям и признаками качества, на которые ориентируются селекционеры при работе над улучшением сельскохозяйственных культур. Действующая таким образом система сыграла важнейшую роль в выработке столь необходимого стране баланса в отношении генетиче- ских ресурсов растений: интродукция ценного экзотического генофонда в целях интенсификации произ- водства сельскохозяйственной продукции ведется без ущерба для местных ресурсов. В настоящее время основными направлениями работы являются: описание генетического материала, сохраненного путем консервации ex situ, и всесторонняя оценка приоритетных сельскохозяйственных культур для более эф- фективного их использования; оценка влияния различных методов мелиорации земель на генетическое разнообразие; полногеномное ассоциативное картирование с целью выявления ранее неизвестных генов и аллелей для более эффективного использования генетических ресурсов растений; отбор генетического материала и/или местных разновидностей и определение оптимальных районов выращивания на основе аналоговых данных наблюдений за климатом; проверка соответствия интродуцированного генетического материала заданным критериям.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Improvements in ex situ storage of genetic and reproductive materials offer an alternative for endangered livestock breed conservation. This paper presents a dataset for current ex situ collections and in situ population for 179 Spanish livestock breeds of seven species, cattle, sheep, pig, chicken, goat, horse and donkey. Ex situ data was obtained via survey administered to 18 functioning gene banks in Spain and relates to the reproductive genetic materials (semen doses) of 210 livestock breeds distributed across the gene banks. In situ data combines CENSUS information with linear regression techniques and relates to the geographic distribution of 179 Spanish autochthonous livestock breeds (2009-2018), and in situ population projections and extinction probabilities (2019-2060). We use a decision variable defining an \"acceptable level of risk\" that allows decision makers to specify tolerable levels of in situ breed endangerment when taking ex situ collection and storage decisions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Gene banks, framed within the efforts for conserving animal genetic resources to ensure the adaptability of livestock production systems to population growth, income, and climate change challenges, have emerged as invaluable resources for biodiversity and scientific research. Allele frequency trajectories over the few last generations contain rich information about the selection history of populations, which cannot be obtained from classical selection scan approaches based on present time data only. Here we apply a new statistical approach taking advantage of genomic time series and a state of the art statistic (nSL) based on present time data to disentangle both old and recent signatures of selection in the Asturiana de los Valles cattle breed. This local Spanish originally multipurpose breed native to Asturias has been selected for beef production over the last few generations. With the use of SNP chip and whole-genome sequencing (WGS) data, we detect candidate regions under selection reflecting the effort of breeders to produce economically valuable beef individuals, e.g., by improving carcass and meat traits with genes such as MSTN, FLRT2, CRABP2, ZNF215, RBPMS2, OAZ2, or ZNF609, while maintaining the ability to thrive under a semi-intensive production system, with the selection of immune (GIMAP7, GIMAP4, GIMAP8, and TICAM1) or olfactory receptor (OR2D2, OR2D3, OR10A4, and 0R6A2) genes. This kind of information will allow us to take advantage of the invaluable resources provided by gene bank collections from local less competitive breeds, enabling the livestock industry to exploit the different mechanisms fine-tuned by natural and human-driven selection on different populations to improve productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号