Dystrophin

肌营养不良蛋白
  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是一种严重的遗传性神经肌肉罕见疾病,其普遍存在并且由编码肌营养不良蛋白的X连锁DMD基因的突变/缺失引起。Utrophin是人6号染色体上的肌营养不良蛋白同源蛋白。肌养蛋白和肌养蛋白高度同源。它们可以募集许多与肌营养不良蛋白-糖蛋白复合物(DGC)相关的蛋白质,并在人类胚胎发育的早期阶段共同定位在肌膜上。此外,在DMD患者的成熟肌纤维肌膜中,肌萎缩素自然过表达。因此,肌养蛋白被认为是替代肌养蛋白最有希望的同源蛋白。这篇综述总结了各种调节营养蛋白替代的药物和基因治疗方法。作为治疗DMD疾病的通用方法,营养蛋白具有良好的治疗前景,值得进一步研究。
    Duchenne muscular dystrophy (DMD) is a serious genetic neuromuscular rare disease that is prevalent and caused by the mutation/deletion of the X-linked DMD gene that encodes dystrophin. Utrophin is a dystrophin homologous protein on human chromosome 6. Dystrophin and utrophin are highly homologous. They can recruit many dystrophin-glycoprotein complex (DGC)-related proteins and co-localize at the sarcolemma in the early stage of human embryonic development. Moreover, utrophin is overexpressed naturally at the mature myofiber sarcolemma in DMD patients. Therefore, utrophin is considered the most promising homologous protein to replace dystrophin. This review summarizes various modulating drugs and gene therapy approaches for utrophin replacement. As a universal method to treat DMD disease, utrophin has a promising therapeutic prospect and deserves further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sarcospan(SSPN)是一种25kDa的跨膜蛋白,在许多组织的细胞表面广泛表达,包括,但不限于,骨骼肌和平滑肌的肌纤维,心肌细胞,脂肪细胞,肾上皮细胞,和神经元。SSPN是连接细胞内肌动蛋白细胞骨架与细胞外基质的肌营养不良蛋白-糖蛋白复合物(DGC)的核心成分。它还与整合素α7β1(骨骼肌中表达的主要整合素)相关。作为具有四个跨膜域的四跨膜蛋白样蛋白,SSPN充当支架以促进细胞膜上的蛋白质-蛋白质相互作用。杜氏肌营养不良症,Becker肌营养不良症,和X连锁扩张型心肌病是由肌细胞表面的肌营养不良蛋白的丢失以及伴随的整个DGC的丢失引起的,包括SSPN。SSPN过表达改善mdx小鼠模型中的Duchenne肌营养不良,这支持SSPN成为可行的治疗靶标。其他拯救研究支持SSPN作为DGC的正确组装和膜表达的生物标志物。SSPN拯救分子机制的基础研究需要针对SSPN的高度特异性和强大的抗体,临床前研究,和人类样本中的生物标志物评估。SSPN抗体的开发受到其四个跨膜结构域和有限的抗原表位的存在的挑战。为了解决有限的市售抗体带来的重大障碍,我们的目标是产生一组强大的SSPN特异性抗体,可以作为研究界的资源。我们创建了针对三个SSPN蛋白表位的抗体,包括细胞内N-和C-末端以及跨膜结构域3和4之间的大细胞外环(LEL)。我们开发了一组针对SSPNN末端肽片段的兔抗体(多抗体和单克隆抗体)。我们使用了几种测定法来显示兔抗体以高功能亲和力和特异性识别小鼠SSPN。我们开发了针对人SSPN的C末端肽和大细胞外环的小鼠单克隆抗体。这些抗体优于市售抗体,并在各种应用中胜过它们。包括免疫印迹,间接免疫荧光分析,免疫沉淀,和ELISA。这些新开发的抗体将显着提高SSPN检测的质量和易用性,用于基础和翻译研究。
    Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7β1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是与肌肉萎缩和退化相关的X连锁进行性疾病。这种疾病是由编码肌营养不良蛋白的基因突变引起的,一种连接细胞骨架和细胞膜蛋白的蛋白质。目前的治疗方法旨在缓解疾病的症状或部分挽救肌肉功能。然而,它们不足以抑制疾病进展。近年来,研究揭示了非编码RNA(ncRNA)在调节多种疾病进展中的重要作用。ncRNAs,如micro-RNAs(miRNA),结合到它们的靶信使RNA(mRNA)以抑制翻译。了解涉及失调的miRNA的机制可以改善诊断,并为DMD患者提供新的治疗方法。这篇综述提供了关于miRNA表达改变在DMD发病机理中的作用的可用证据。我们讨论了这些分子在与肌肉生理学和DMD相关的心肌病相关的过程中的参与。
    Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DMD基因中的突变导致致命的杜氏肌营养不良(DMD)。一种有吸引力的治疗方法是利用源自诱导多能干细胞(iPSC)的肌原祖细胞的自体细胞移植。鉴于显著数量的DMD突变发生在外显子45和55之间,我们开发了基因敲入方法来校正外显子44下游的任何突变。我们将这种方法应用于两个在外显子45和51中携带突变的DMD患者特异性iPSC系,并通过蛋白质印迹和免疫荧光染色证实了校正肌管中的微型DYSTROPHIN(微型DYS)蛋白表达。将基因编辑的DMDiPSC衍生的肌原祖细胞移植到NSG/mdx4Cv小鼠中,产生了供体衍生的肌纤维,如人肌动蛋白和层A/C的双重表达所示。这些发现进一步为使用可编程核酸酶开发基于自体iPSC的肌营养不良疗法提供了概念验证。
    Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞极性机制允许形成具有独特蛋白质组成的专门膜结构域,信号属性,和功能特征。通过分析钾通道和属于肌营养不良蛋白相关蛋白复合物的蛋白质的定位,我们揭示了在C.elegans肌肉细胞表面存在不同的平面极化膜区室。我们发现,肌肉极性是由涉及配体EGL-20/Wnt的非规范Wnt信号级联控制的,受体CAM-1/Ror,和细胞内效应物DSH-1/Dishevelled。有趣的是,此过程不需要经典的平面细胞极性蛋白。使用时间分辨的蛋白质降解,我们证明了-虽然它在胚胎发生结束时基本上已经到位-肌肉极性是一种动态状态,需要在整个胚胎后生命中持续存在DSH-1。我们的结果揭示了C.elegans肌肉膜的意外复杂性,并建立了一个可遗传处理的模型系统来研究体内细胞极性和膜区室化。
    Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Duchenne肌营养不良症是一种严重的神经肌肉疾病,由DMD基因突变引起,导致肌养蛋白生产中断。除了肌肉中的肌营养不良蛋白表达,该蛋白的不同同工型也在脑中表达,这些同工型的缺乏会导致患者的认知和行为缺陷。尚不清楚较短的肌营养不良蛋白同工型Dp140的丢失如何影响这些过程。使用各种行为测试,我们发现mdx和mdx4cv小鼠(分别缺乏Dp427或Dp427+Dp140)在工作记忆方面表现出相似的缺陷,运动模式和血脑屏障完整性。这两个模型都没有表现出空间学习和记忆的缺陷,学习的灵活性,焦虑或自发行为,我们也没有观察到水通道蛋白4和胶质纤维酸性蛋白的差异。这些结果表明,与Dp427相比,Dp140在学习过程中不发挥关键作用。记忆和自发行为。
    Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌营养不良是导致肌肉完整性进行性丧失的一类破坏性疾病。杜氏肌营养不良症,最常见的肌肉萎缩症,是由于功能性肌营养不良蛋白的丧失。虽然人们对这些疾病中肌肉组织的破坏有很多了解,对于这些疾病中也发生的突触缺陷,人们知之甚少。突触缺陷也是神经退行性疾病的最早标志之一,包括神经肌肉疾病肌萎缩侧索硬化症(ALS)。我们目前的研究调查了成年肌肉组织中的突触缺陷以及果蝇肌营养不良蛋白突变体中的突触前运动神经元。在这里,我们证明了进步,肌营养不良蛋白突变体的飞行能力的年龄依赖性丧失伴随着神经肌肉结(NMJs)的紊乱,包括突触前和突触后标记的定位受损。我们发现这些突触缺陷,包括运动神经元内的突触前缺陷,是由于肌肉内的肌营养不良蛋白的损失。这些结果应有助于更好地了解神经肌肉疾病中细胞丢失之前的早期突触缺陷。
    Muscular dystrophies are a devastating class of diseases that result in a progressive loss of muscle integrity. Duchenne Muscular Dystrophy, the most prevalent form of Muscular Dystrophy, is due to the loss of functional Dystrophin. While much is known regarding destruction of muscle tissue in these diseases, much less is known regarding the synaptic defects that also occur in these diseases. Synaptic defects are also among the earliest hallmarks of neurodegenerative diseases, including the neuromuscular disease Amyotrophic Lateral Sclerosis (ALS). Our current study investigates synaptic defects within adult muscle tissues as well as presynaptic motor neurons in Drosophila dystrophin mutants. Here we demonstrate that the progressive, age-dependent loss of flight ability in dystrophin mutants is accompanied by disorganization of Neuromuscular Junctions (NMJs), including impaired localization of both presynaptic and postsynaptic markers. We show that these synaptic defects, including presynaptic defects within motor neurons, are due to the loss of Dystrophin specifically within muscles. These results should help to better understand the early synaptic defects preceding cell loss in neuromuscular disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于嵌合主义的策略代表了一个开创性的概念,它导致了再生医学和移植的突破性进展。这种新方法为治疗各种疾病提供了治疗潜力,包括遗传性疾病。对嵌合细胞的正在进行的研究促进了表达肌营养不良蛋白的嵌合(DEC)细胞的发展,该细胞被引入作为Duchenne肌营养不良(DMD)的潜在疗法。DMD是一种导致青春期男孩过早死亡的遗传病,目前的方法仍然无法治愈。DEC治疗,通过来自正常和受DMD影响的供体的人类成肌细胞融合而产生,当在全身-骨内给药后在DMD的实验模型中测试时,已证明是安全和有效的。这些研究证实了肌营养不良蛋白表达的增加,这与受DMD影响的肌肉的功能和形态改善有关,包括心脏,呼吸,和骨骼肌。此外,DEC疗法在一项临床研究中的应用证实了其在DMD患者中的长期安全性和有效性.本文综述了在临床前模型和临床研究中测试的嵌合细胞技术的发展。强调DEC疗法在肌肉再生和修复中的潜力,并介绍了基于嵌合细胞的疗法作为一种有前途的,肌肉再生的新方法以及DMD和其他神经肌肉疾病的治疗。
    Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺乏肌营养不良蛋白会导致肌肉无力,Duchenne型肌营养不良症(DMD)的慢性炎症和心肌病。药物皮质类固醇是DMD护理标准;然而,它们有严重的副作用和不清楚的分子益处。尚不确定生理皮质类固醇及其受体的信号传导是否在DMD的自然病因中起修饰作用。这里,我们敲除了糖皮质激素受体(GR,由Nr3c1编码),特别是在野生型和mdx52小鼠的肌纤维和心肌细胞中,以剖析其在肌营养不良中的作用。双基因敲除小鼠在握力测量中表现出比mdx52同窝动物对照明显更差的表型,挂断时间,炎症病理和基因表达。在心中,GR缺失与肌营养不良蛋白丢失相加,加剧心肌病,导致心脏扩大,病理基因表达和收缩功能障碍,与盐皮质激素信号不平衡一致。结果表明,生理GR功能在肌营养不良期间提供保护作用,直接对比其在其他疾病状态中的退化作用。这些数据为皮质类固醇在疾病病理生理学中的作用提供了新的见解,并建立了一个新的模型来研究核受体的细胞自主作用和药理学皮质类固醇的机制。
    Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号