Chromosomes, Artificial, Bacterial

染色体,人工,细菌
  • 文章类型: Journal Article
    副本,来自RNA病毒,是保留必需病毒酶基因而缺乏关键结构蛋白基因的遗传构建体。一旦引入细胞,复制子RNA携带的基因被表达,RNA自我复制,然而,病毒颗粒生产不发生。通常,RNA复制子在体外转录,然后在细胞中电穿孔。然而,在DNA转染而不是RNA转染后在细胞中产生复制子将是有利的。在这项研究中,将在T7启动子控制下编码SARS-CoV-2复制子的细菌人工染色体(BAC)DNA转染到HEK293T细胞中,这些细胞被工程化以功能性表达T7RNA聚合酶(T7RNAP)。转染BACDNA后,我们观察到低,但该复制子携带的报告蛋白GFP和荧光素酶的可重复表达。报道蛋白的表达需要在转染之前使BACDNA线性化。此外,表达独立于T7RNAP。基因表达也对remdesivir治疗不敏感,这表明它不涉及复制子RNA的自我复制。在高度允许SARS-CoV-2感染的Calu-3细胞中获得了类似的结果。引人注目的是,SARS-CoV-2N蛋白的先前表达增强了转染的SARS-CoV-2RNA复制子的表达,但不增强复制子BACDNA的表达。总之,编码冠状病毒复制子的大DNA的转染通过未知的机制导致可重复的复制子基因表达。这些发现突出了从转染的复制子cDNA中表达复制子基因的新途径,为开发基于DNA的RNA复制子应用方法提供有价值的见解。
    Replicons, derived from RNA viruses, are genetic constructs retaining essential viral enzyme genes while lacking key structural protein genes. Upon introduction into cells, the genes carried by the replicon RNA are expressed, and the RNA self-replicates, yet viral particle production does not take place. Typically, RNA replicons are transcribed in vitro and are then electroporated in cells. However, it would be advantageous for the replicon to be generated in cells following DNA transfection instead of RNA. In this study, a bacterial artificial chromosome (BAC) DNA encoding a SARS-CoV-2 replicon under control of a T7 promoter was transfected into HEK293T cells engineered to functionally express the T7 RNA polymerase (T7 RNAP). Upon transfection of the BAC DNA, we observed low, but reproducible expression of reporter proteins GFP and luciferase carried by this replicon. Expression of the reporter proteins required linearization of the BAC DNA prior to transfection. Moreover, expression occurred independently of T7 RNAP. Gene expression was also insensitive to remdesivir treatment, suggesting that it did not involve self-replication of replicon RNA. Similar results were obtained in highly SARS-CoV-2 infection-permissive Calu-3 cells. Strikingly, prior expression of the SARS-CoV-2 N protein boosted expression from transfected SARS-CoV-2 RNA replicon but not from the replicon BAC DNA. In conclusion, transfection of a large DNA encoding a coronaviral replicon led to reproducible replicon gene expression through an unidentified mechanism. These findings highlight a novel pathway toward replicon gene expression from transfected replicon cDNA, offering valuable insights for the development of methods for DNA-based RNA replicon applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)诱导直接的细胞病变效应,复杂的低细胞毒性细胞培养模型的建立研究其复制。我们最初开发了一种基于DNA载体的复制子系统,该系统利用CMV启动子产生带有报告基因的重组病毒基因组。然而,该系统经常导致耐药性和细胞毒性,阻碍模型建立。在这里,我们提出了一种通过Cre/LoxP介导的DNA重组诱导SARS-CoV-2复制的新型细胞培养模型。将工程化的SARS-CoV-2转录单位亚克隆到细菌人工染色体(BAC)载体中。为了加强生物安全,病毒刺突蛋白基因被删除,核衣壳基因被报告基因取代。外源序列作为在Cre/LoxP介导的DNA重组和随后的RNA剪接后可去除的调节盒插入NSP1中。使用PiggyBac转座子策略,转录单元整合到宿主细胞染色质中,产生能够诱导重组SARS-CoV-2RNA复制的稳定细胞系。该模型对潜在的抗病毒剂连翘酯苷A和维替泊芬表现出敏感性。引入了一种创新的诱导型SARS-CoV-2复制子细胞模型,以进一步探索病毒的复制和发病机理,并促进抗SARS-CoV-2疗法的筛选和评估。
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces direct cytopathic effects, complicating the establishment of low-cytotoxicity cell culture models for studying its replication. We initially developed a DNA vector-based replicon system utilizing the CMV promoter to generate a recombinant viral genome bearing reporter genes. However, this system frequently resulted in drug resistance and cytotoxicity, impeding model establishment. Herein, we present a novel cell culture model with SARS-CoV-2 replication induced by Cre/LoxP-mediated DNA recombination. An engineered SARS-CoV-2 transcription unit was subcloned into a bacterial artificial chromosome (BAC) vector. To enhance biosafety, the viral spike protein gene was deleted, and the nucleocapsid gene was replaced with a reporter gene. An exogenous sequence was inserted within NSP1 as a modulatory cassette that is removable after Cre/LoxP-mediated DNA recombination and subsequent RNA splicing. Using the PiggyBac transposon strategy, the transcription unit was integrated into host cell chromatin, yielding a stable cell line capable of inducing recombinant SARS-CoV-2 RNA replication. The model exhibited sensitivity to the potential antivirals forsythoside A and verteporfin. An innovative inducible SARS-CoV-2 replicon cell model was introduced to further explore the replication and pathogenesis of the virus and facilitate screening and assessment of anti-SARS-CoV-2 therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Tn7转座方法用于将外源基因位点特异性插入猿猴水痘病毒(SVV)的基因组中,非人灵长类动物中猿猴水痘的病原体。将严重急性呼吸综合征冠状病毒(SARS-CoV-2)核衣壳(N)基因和刺突基因的受体结合域(RBD)插入克隆到细菌人工染色体中的SVV基因组的ORF14区域,然后转染到Vero细胞中,以产生感染性重组SVV(rSVV)。如免疫印迹和免疫荧光测定所示,rSVV在感染的Vero细胞中有效复制并表达N和RBD抗原。Tn7介导的转座为构建rSVV提供了一种快速有效的方法,可将其评估为减毒活疫苗。
    A Tn7-transposition approach was utilized for site-specific insertion of foreign genes into the genome of simian varicella virus (SVV), the causative agent of simian varicella in nonhuman primates. The severe acute respiratory syndrome coronavirus (SARS-CoV-2) nucleocapsid (N) gene and receptor binding domain (RBD) of the spike gene were inserted into the ORF 14 region of the SVV genome cloned into a bacterial artificial chromosome and then transfected into Vero cells to generate the infectious recombinant SVV (rSVV). The rSVV replicated efficiently in infected Vero cells and expressed the N and RBD antigens as indicated by immunoblot and immunofluorescence assays. Tn7-mediated transposition provides a rapid and efficient method for constructing rSVVs which may be evaluated as live-attenuated vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    紫色海胆中的SpTransformer(SpTrf)基因家族,紫癜,编码免疫应答蛋白。基因是聚集的,被短串联重复所包围,一些存在于基因组片段复制中。这些基因共享序列区域并且在编码外显子中包括重复序列。这种复杂的结构与推定的局部基因组不稳定性一致。通过大肠杆菌生长10天,测试了SpTrf基因簇的不稳定性,该大肠杆菌具有含有SpTrf基因的插入物的海胆基因组DNA的细菌人工染色体(BAC)克隆。生长期之后,分析BACDNA插入片段的大小和SpTrf基因含量。具有多个SpTrf基因的克隆显示出多种缺失,包括失去一个,大多数,或集群中的所有基因。或者,具有单个SpTrf基因的BAC插入物是稳定的。BAC插入不稳定与海胆中基因家族组成的变化一致,家族中SpTrf基因的类型,以及单个腔体细胞中基因拷贝数的减少。根据海胆内部和之间的SpTrf基因之间的序列变异性,该家族的局部基因组不稳定性对于驱动该基因家族的序列多样性可能很重要,这将有利于海胆与海洋微生物的军备竞赛。
    The SpTransformer (SpTrf) gene family in the purple sea urchin, Strongylocentrotus purpuratus, encodes immune response proteins. The genes are clustered, surrounded by short tandem repeats, and some are present in genomic segmental duplications. The genes share regions of sequence and include repeats in the coding exon. This complex structure is consistent with putative local genomic instability. Instability of the SpTrf gene cluster was tested by 10 days of growth of Escherichia coli harboring bacterial artificial chromosome (BAC) clones of sea urchin genomic DNA with inserts containing SpTrf genes. After the growth period, the BAC DNA inserts were analyzed for size and SpTrf gene content. Clones with multiple SpTrf genes showed a variety of deletions, including loss of one, most, or all genes from the cluster. Alternatively, a BAC insert with a single SpTrf gene was stable. BAC insert instability is consistent with variations in the gene family composition among sea urchins, the types of SpTrf genes in the family, and a reduction in the gene copy number in single coelomocytes. Based on the sequence variability among SpTrf genes within and among sea urchins, local genomic instability of the family may be important for driving sequence diversity in this gene family that would be of benefit to sea urchins in their arms race with marine microbes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全基因组合成为理解和扩展生物体功能1-3提供了强大的方法。为了快速建立大基因组,可扩展和并行,我们需要(1)从较短的前体中组装大量DNA的方法,以及(2)用合成DNA快速,可扩展地替换生物体基因组DNA的策略。在这里,我们开发了细菌人工染色体(BAC)逐步插入合成(BASIS)-一种在大肠杆菌附加体中进行DNA大碱基规模组装的方法。我们使用BASIS来组装含有大量外显子的1.1Mb人类DNA,内含子,重复序列,G-四链体,和长短散布的核元素(LINE和SINE)。BASIS为构建各种生物的合成基因组提供了强大的平台。我们还开发了连续基因组合成(CGS)-一种用合成DNA连续替换大肠杆菌基因组100kb序列段的方法;CGS将合成DNA和基因组之间的交叉1,4最小化,从而使每100kb替换的输出提供,没有测序,下一个100kb替换的输入。使用CGS,我们在10天内从五个附加体合成了大肠杆菌基因组的0.5Mb部分-其总合成1的关键中间体。通过并行化CGS并将其与快速寡核苷酸合成和附加体组装5,6结合,以及从具有不同合成基因组部分1,7,8的菌株中编译单个基因组的快速方法,我们预计将有可能在不到2个月的时间内从功能设计中合成整个大肠杆菌基因组。
    Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10  days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    未经证实:从修饰的DNA中拯救病毒的反向遗传学系统是研究病毒分子机制的有用工具。COVID-19大流行促使SARS-CoV-2的几种反向遗传学系统的发展。环状聚合酶延伸反应(CPER)方法能够快速产生重组SARS-CoV-2;然而,这种基于PCR的方法可能由于PCR错误而引入不需要的突变。
    UNASSIGNED:为了比较CPER和使用细菌人工染色体(BAC)的经典反向遗传学方法的准确性,SARS-CoV-2武汉/Hu-1/2019使用BAC产生5次,使用CPER产生5次。然后对这10种独立的病毒进行深度测序,并计算频率大于10%的替代数量。
    UNASSIGNED:在通过BAC方法产生的所有五种独立病毒原种中均未观察到频率大于10%的核苷酸取代。相比之下,在CPER产生的5种病毒原液中的4种病毒中检测到3至5种频率超过10%的不需要的核苷酸取代.此外,使用CPER在3种病毒原种中产生了4种频率超过20%的替换.
    UNASSIGNED:我们发现CPER方法的准确性低于BAC方法。我们的研究结果表明,在采用CPER方法时应注意。
    Reverse genetics systems to rescue viruses from modified DNA are useful tools to investigate the molecular mechanisms of viruses. The COVID-19 pandemic prompted the development of several reverse genetics systems for SARS-CoV-2. The circular polymerase extension reaction (CPER) method enables the rapid generation of recombinant SARS-CoV-2; however, such PCR-based approaches could introduce unwanted mutations due to PCR errors.
    To compare the accuracy of CPER and a classic reverse genetics method using bacterial artificial chromosome (BAC), SARS-CoV-2 Wuhan/Hu-1/2019 was generated five times using BAC and five times using CPER. These 10 independent virus stocks were then deep sequencing, and the number of substitutions for which the frequency was greater than 10% was counted.
    No nucleotide substitutions with a frequency of greater than 10% were observed in all five independent virus stocks generated by the BAC method. In contrast, three to five unwanted nucleotide substitutions with a frequency of more than 10% were detected in four of the five virus stocks generated by the CPER. Furthermore, four substitutions with frequencies greater than 20% were generated in three virus stocks by using the CPER.
    We found that the accuracy of the CPER method is lower than that of the BAC method. Our findings suggest care should be used when employing the CPER method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    报道表达重组病毒是一个很好的选择和强大的工具,其中,病毒感染,致病性,和传输,以及确定抑制病毒感染和预防性疫苗的治疗化合物。为了对抗正在进行的2019年冠状病毒病(COVID-19)大流行,我们建立了一个强大的基于细菌人工染色体(BAC)的反向遗传学(RG)系统,以快速产生重组严重急性呼吸综合征冠状病毒2(rSARS-CoV-2),从而研究病毒蛋白在病毒发病机制中的作用.此外,我们已经设计了表达报告基因的重组病毒,其中我们将报告基因置于病毒核衣壳(N)基因的上游,以促进高水平的报告基因表达,这有利于SARS-CoV-2的体外和体内研究。迄今为止,我们已经与全球100多个实验室共享了基于BAC的RG系统,这有助于加快SARS-CoV-2的调查。然而,包含整个SARS-CoV-2基因组(〜30,000nt)的BAC的遗传操作具有挑战性。在这里,我们使用基于BAC的RG方法为工程rSARS-CoV-2提供技术细节。我们描述了(i)将全长(FL)SARS-CoV-2基因组序列组装到空pBeloBAC中,(ii)pBeloBAC-FL的验证,(iii)将金星报告基因克隆到pBeloBAC-FL中,和(iv)表达Venus的rSARS-CoV-2的回收。通过遵循这个协议,具有基本分子生物学和基因工程技术知识的研究人员将能够产生野生型(WT)和报告表达rSARS-CoV-2。重要性我们已经建立了基于细菌人工染色体(BAC)的RG系统,以产生重组的严重急性呼吸综合征冠状病毒2(rSARS-CoV-2),并设计了表达报告基因的重组病毒,以评估体外和体内的病毒感染。迄今为止,我们已经与全球100多个实验室共享了基于BAC的RG系统,这有助于加快SARS-CoV-2的调查。然而,含有约30,000个核苷酸的全长SARS-CoV-2基因组的BAC的遗传操作具有挑战性。这里,我们提供了成功生成野生型(WT)重组SARS-CoV-2(rSARS-CoV-2)所需的所有详细实验步骤。同样,我们提供了有关如何从病毒核衣壳(N)蛋白基因座产生和挽救表达高水平金星荧光报告基因的rSARS-CoV-2的综合方案。通过遵循这些协议,具有分子生物学基础知识的研究人员将能够在40天内产生WT和表达Venus的rSARS-CoV-2。
    Reporter-expressing recombinant virus represents an excellent option and a powerful tool to investigate, among others, viral infection, pathogenicity, and transmission, as well as to identify therapeutic compounds that inhibit viral infection and prophylactic vaccines. To combat the ongoing coronavirus disease 2019 (COVID-19) pandemic, we have established a robust bacterial artificial chromosome (BAC)-based reverse genetics (RG) system to rapidly generate recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) to study the contribution of viral proteins in viral pathogenesis. In addition, we have engineered reporter-expressing recombinant viruses in which we placed the reporter genes upstream of the viral nucleocapsid (N) gene to promote high levels of reporter gene expression, which facilitates the study of SARS-CoV-2 in vitro and in vivo. To date, we have shared our BAC-based RG system with more than 100 laboratories around the world, which has helped to expedite investigations with SARS-CoV-2. However, genetic manipulation of the BAC containing the entire SARS-CoV-2 genome (~30,000 nt) is challenging. Herein, we provide the technical details to engineer rSARS-CoV-2 using the BAC-based RG approach. We describe (i) assembly of the full-length (FL) SARS-CoV-2 genome sequences into the empty pBeloBAC, (ii) verification of pBeloBAC-FL, (iii) cloning of a Venus reporter gene into pBeloBAC-FL, and (iv) recovery of the Venus-expressing rSARS-CoV-2. By following this protocol, researchers with knowledge of basic molecular biology and gene engineering techniques will be able to generate wild-type (WT) and reporter-expressing rSARS-CoV-2. IMPORTANCE We have established a bacterial artificial chromosome (BAC)-based RG system to generate recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) and to engineer reporter-expressing recombinant viruses to assess viral infection in vitro and in vivo. To date, we have shared our BAC-based RG system with more than 100 laboratories around the world, which has helped to expedite investigations with SARS-CoV-2. However, genetic manipulation of the BAC containing the full-length SARS-CoV-2 genome of ~30,000 nucleotides is challenging. Here, we provide all the detailed experimental steps required for the successful generation of wild-type (WT) recombinant SARS-CoV-2 (rSARS-CoV-2). Likewise, we provide a comprehensive protocol on how to generate and rescue rSARS-CoV-2 expressing high levels of a Venus fluorescent reporter gene from the locus of the viral nucleocapsid (N) protein. By following these protocols, researchers with basic knowledge in molecular biology will be able to generate WT and Venus-expressing rSARS-CoV-2 within 40 days.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌人工染色体已广泛用于探索哺乳动物基因组。尽管新颖的方法使其最初的功能具有消耗性,可用的BAC图书馆是生命科学的宝贵来源。它们由延伸的基因组区域组成为创建大的靶向载体提供了理想的基础。这里,我们描述了从它们的库中识别合适的BAC并在操作之前进行验证。Further,修改BAC的协议,确认所需的修饰和转染到哺乳动物细胞中的制备。
    Bacterial artificial chromosomes have been used extensively for the exploration of mammalian genomes. Although novel approaches made their initial function expendable, the available BAC libraries are a precious source for life science. Their comprising of extended genomic regions provides an ideal basis for creating a large targeting vector. Here, we describe the identification of suitable BACs from their libraries and their verification prior to manipulation. Further, protocols for modifying BAC, confirming the desired modification and the preparation of transfection into mammalian cells are given.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    利用噬菌体λRed重组功能的重组方法广泛用于大肠杆菌中细菌人工染色体(BAC)携带的真核基因的通用修饰。而BAC转化提供了将修饰的基因整合到动物细胞基因组中以产生敲入和敲除系的简单方法,这种策略的成功应用受到高等植物中同源重组频率低的阻碍。然而,植物细胞可以使用土壤杆菌的转移DNA(T-DNA)以高频率转化,稳定随机整合到植物基因组中。因此,可以使用基于T-DNA的Crisp/Cas9构建体通过T-DNA插入或基因组编辑诱导的敲除突变的遗传互补来适当地研究通过重组工程修饰并通过农杆菌T-DNA载体转移到植物细胞中的植物基因的功能。在这里,我们描述了两种重组工程方案,用于将植物基因从BAC修饰和转移到农杆菌T-DNA植物转化载体中。第一个方案使用条件自杀ccdB基因盒来通过产生点突变来辅助遗传互补测定,删除,和任何基因位置的插入。第二个“turbo”重组协议利用各种I-SceI插入盒将荧光蛋白标签与植物基因产物融合,以促进通过亲和纯化表征其体内相互作用的伴侣,质谱,和细胞定位研究。
    Recombineering approaches exploiting the bacteriophage λ Red recombination functions are widely used for versatile modification of eukaryotic genes carried by bacterial artificial chromosomes (BACs) in E. coli. Whereas BAC transformation provides a simple means for integration of modified genes into the genomes of animal cells to generate knock-in and knockout lines, successful application of this strategy is hampered by low frequency of homologous recombination in higher plants. However, plant cells can be transformed at a high frequency using the transferred DNA (T-DNA) of Agrobacterium, which is stably and randomly integrated into the plant genome. The function of plant genes that are modified by recombineering and transferred by Agrobacterium T-DNA vectors into plant cells can thus be suitably studied using genetic complementation of knockout mutations induced by either T-DNA insertions or genome editing with T-DNA-based Crisp/Cas9 constructs. Here we describe two recombineering protocols for modification and transfer of plant genes from BACs into Agrobacterium T-DNA plant transformation vectors. The first protocol uses a conditional suicide ccdB gene cassette to assist the genetic complementation assays by generation of point mutations, deletions, and insertions at any gene position. The second \"turbo\"-recombineering protocol exploits various I-SceI insertion cassettes for fusing of fluorescent protein tags to the plant gene products to facilitate the characterization of their in vivo interacting partners by affinity purification, mass spectrometry, and cellular localization studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自2000年首次发布以来,人类参考基因组仅涵盖基因组的正常部分,留下重要的异色区域未完成。解决剩下的8%的基因组,端粒到端粒(T2T)联盟提出了人类基因组的完整的30.55亿个碱基对序列,T2T-CHM13,包括除Y以外的所有染色体的无间隙组装,纠正先前引用中的错误,并引入了包含1956年基因预测的近2亿个碱基对序列,其中99个被预测为蛋白质编码。完成的区域包括所有着丝粒卫星阵列,最近的分段重复,和所有5个顶心染色体的短臂,解锁基因组的这些复杂区域进行变异和功能研究。
    Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号