Accessory proteins

辅助蛋白
  • 文章类型: Journal Article
    猪甲型流感病毒(swIAV)的特征在于高突变率和人畜共患和大流行的可能性。为了得出有关猪的毒力和对人类的致病性的结论,我们检查了分子标记和辅助蛋白的存在,与疫苗株的交叉反应,5株H1N1病毒对抗病毒药物的耐药性。
    在MEGA7.0软件和流感研究数据库中分析了五个先前遗传表征的swIAV的氨基酸(AA)序列。
    氨基酸分析显示三种病毒株在碱性聚合酶2(PB2)AA链内具有590S/591R多态性和T271A取代,导致哺乳动物细胞中病毒复制增强。另外两个菌株在PB2中具有D701N和R251K取代,并合成了PB1-F2蛋白,这是猪聚合酶活性和毒力增加的因素。所有菌株都合成了PB1-N40,PA-N155,PA-N182和PA-X蛋白,这些蛋白负责增强哺乳动物细胞中的复制并下调宿主的免疫反应。在血凝素抗原位点内检测到的突变意味着五种分析的病毒相对于疫苗株的抗原漂移。所有病毒对神经氨酸酶抑制剂和巴洛沙韦,这在人类偶然感染的情况下很重要。
    在所分析的病毒中检测到毒力标记和辅助蛋白表明它们在哺乳动物细胞中复制的倾向更高,毒力增加,以及传播给人类的可能性,并暗示流感疫苗的功效受损。
    UNASSIGNED: Swine influenza A viruses (swIAVs) are characterised by high mutation rates and zoonotic and pandemic potential. In order to draw conclusions about virulence in swine and pathogenicity to humans, we examined the existence of molecular markers and accessory proteins, cross-reactivity with vaccine strains, and resistance to antiviral drugs in five strains of H1N1 swIAVs.
    UNASSIGNED: Amino acid (AA) sequences of five previously genetically characterised swIAVs were analysed in MEGA 7.0 software and the Influenza Research Database.
    UNASSIGNED: Amino acid analysis revealed three virus strains with 590S/591R polymorphism and T271A substitution within basic polymerase 2 (PB2) AA chains, which cause enhanced virus replication in mammalian cells. The other two strains possessed D701N and R251K substitutions within PB2 and synthesised PB1-F2 protein, which are the factors of increased polymerase activity and virulence in swine. All strains synthesised PB1-N40, PA-N155, PA-N182, and PA-X proteins responsible for enhanced replication in mammalian cells and downregulation of the immune response of the host. Mutations detected within haemagglutinin antigenic sites imply the antigenic drift of the five analysed viruses in relation to the vaccine strains. All viruses show susceptibility to neuraminidase inhibitors and baloxavir marboxil, which is important in situations of incidental human infections.
    UNASSIGNED: The detection of virulence markers and accessory proteins in the analysed viruses suggests their higher propensity for replication in mammalian cells, increased virulence, and potential for transmission to humans, and implies compromised efficacy of influenza vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸综合征冠状病毒2(SARS-CoV-2)编码六种辅助蛋白(3a,6、7a、7b,8和9b),关于它们在发病机理中的作用的信息有限。我们表明,删除开放阅读框(ORFs)6,7a,或7b单独没有显著影响人源化K18-hACE2转基因小鼠的病毒致病性。相比之下,ORF8的缺失部分减弱了SARS-CoV-2,导致肺部病理降低,死亡率降低了40%,表明ORF8是SARS-CoV-2发病机制的关键决定因素。SARS-CoV-2-Δ8的衰减与小鼠肺部或类器官来源的人气道细胞中复制的显着减少无关。小鼠肺部感染后早期(1dpi)的干扰素信号传导增加,感染后晚期的促炎和干扰素反应减少,在小鼠肺(6dpi)和类器官来源的人气道细胞[感染后72小时(hpi)]中,被观察到。早期,但没有延长,干扰素反应以及较低的炎症反应可以解释SARS-CoV-Δ8的部分减弱。SARS-CoV-2中ORF8的存在与小鼠肺中巨噬细胞数量的增加有关。此外,与SARS-CoV-2-Δ8感染的细胞相比,SARS-CoV-2-WT(野生型)感染的类器官衍生细胞的上清液增强了巨噬细胞的活化。这些结果表明,ORF8是一种参与炎症的毒力因子,可在COVID-19治疗中靶向。重要性严重急性呼吸综合征冠状病毒2(SARS-CoV-2)ORF8与COVID-19发病机制的相关性尚不清楚。ORF8缺失的病毒天然分离株与野生轻症相关,提示ORF8可能有助于SARS-CoV-2的毒力。该手稿表明,在两个实验系统中,ORF8参与炎症和巨噬细胞的激活:人源化K18-hACE2转基因小鼠和类器官来源的人气道细胞。这些结果确定ORF8蛋白是COVID-19治疗的潜在靶标。
    OBJECTIVE: The relevance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF8 in the pathogenesis of COVID-19 is unclear. Virus natural isolates with deletions in ORF8 were associated with wild milder disease, suggesting that ORF8 might contribute to SARS-CoV-2 virulence. This manuscript shows that ORF8 is involved in inflammation and in the activation of macrophages in two experimental systems: humanized K18-hACE2 transgenic mice and organoid-derived human airway cells. These results identify ORF8 protein as a potential target for COVID-19 therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2,COVID-19大流行的原因,具有在其基因组中编码的11种辅助蛋白。它们在感染过程中的作用仍未完全理解。在这项研究中,转录组学分析显示,在表达SARS-CoV-2(武汉-Hu-1分离株)的单个辅助蛋白ORF6,ORF8,ORF9b或ORF9c的A549细胞中,WNT5A和IL11均显着上调。IL11是细胞因子IL6家族的成员。IL11信号传导相关基因也差异表达。生物信息学分析显示,WNT5A和IL11都参与肺纤维化特发性疾病,功能测定证实了它们与促纤维化细胞反应的关联。随后,与感染SARS-CoV-2的肺细胞系或COVID-19患者的肺活检的数据比较,证明了与本研究中获得的结果相匹配的促纤维化基因表达改变。我们的结果显示ORF6、ORF8、ORF9b和ORF9c参与炎症和促纤维化反应。因此,这些辅助蛋白可以通过针对COVID-19疾病的新疗法来靶向。
    SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管它的名字暗示,COVID-19大流行病原体“严重急性呼吸系统综合症冠状病毒-2”(SARS-CoV-2)的影响并不总是有限的,既不是暂时的(长期的而不是急性的,被称为长COVID)或空间(影响几个身体系统)。此外,对这种ss(+)RNA病毒的深入研究违背了既定的方案,根据该方案,它刚刚发生了一个局限于细胞膜和细胞质的裂解周期,离开细胞核基本上“不受影响”。累积证据表明,SARS-CoV-2成分会干扰某些蛋白质通过核孔的运输。一些SARS-CoV-2结构蛋白,如Spike(S)和Nucleocapsid(N),大多数非结构蛋白(值得注意的是,Nsp1和Nsp3),以及一些辅助蛋白(ORF3d,ORF6,ORF9a)可以由于其核定位信号(NLS)或与其他蛋白质一起穿梭而到达核质。一定百分比的SARS-CoV-2RNA也可以到达核质。值得注意的是,最近通过证明——至少在某些条件下——引发了争议,SARS-CoV-2序列可以逆转录并作为DNA插入宿主基因组中,产生嵌合基因。反过来,病毒-宿主嵌合蛋白的表达可能会产生新抗原,激活自身免疫并促进慢性促炎状态。
    Despite what its name suggests, the effects of the COVID-19 pandemic causative agent \"Severe Acute Respiratory Syndrome Coronavirus-2\" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically \"untouched\". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    冠状病毒(CoV)是包膜和正链RNA病毒,具有大基因组(〜30kb)。CoV包括必需基因,如复制酶和四个编码结构蛋白的基因(S,M,N和E),和编码辅助蛋白的基因,它们的数量是可变的,不同CoV之间的序列和功能。辅助蛋白对病毒复制是非必需的,但经常参与与毒力相关的病毒-宿主相互作用。关于CoV辅助蛋白的科学文献包括分析在病毒感染的背景下删除或突变辅助基因的影响的信息,这需要使用反向遗传学系统对CoV基因组进行改造。然而,相当多的出版物通过在不存在其他病毒蛋白的情况下过度表达蛋白质来分析基因功能。此ectopic表达式提供相关信息,尽管不承认病毒感染过程中蛋白质的复杂相互作用。对文献进行批判性审查可能有助于解释通过不同实验方法获得的结论中的明显差异。本文综述了人类CoV辅助蛋白的最新知识,强调它们对病毒-宿主相互作用和发病机理的贡献。这些知识可能有助于寻找抗病毒药物和疫苗的开发,一些高致病性人类CoV仍然需要。
    Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    HIV-1包膜(Env)构象决定了感染的CD4T细胞对抗体依赖性细胞毒性(ADCC)的敏感性。在与CD4相互作用时,Env采用更多的“开放”构象,暴露ADCC表位。HIV-1限制Env-CD4相互作用,并通过通过Nef下调CD4来保护受感染的细胞免受ADCC,Vpu,和Env。数据有限,然而,这些蛋白质在下调受感染巨噬细胞的CD4中的作用以及这如何影响Env构象。而Nef,Vpu,和Env都需要有效下调感染的CD4+T细胞上的CD4,我们在这里表明,这些蛋白质中的任何一种都足以从感染的巨噬细胞表面下调大多数CD4。与这一发现一致,与CD4+T细胞相比,Nef和Vpu对感染巨噬细胞的Env构象和ADCC敏感性的影响较小。然而,用小的CD4模拟物处理感染的巨噬细胞会暴露脆弱的CD4诱导的Env表位并使其对ADCC敏感。
    HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more \"open\" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2是导致COVID-19大流行的病毒。SARS-CoV-2的基因组编码9种参与宿主-病原体相互作用的辅助蛋白。ORF8在这些辅助蛋白中是独特的。SARS-CoV-2ORF8与SARS-COVORF8具有惊人的低氨基酸序列相似性(30%),它被认为起源于蝙蝠。研究表明,ORF8发挥多种不同的功能,干扰宿主的免疫反应,包括I类MHC分子的下调。这些功能可能代表宿主免疫逃避的策略。ORF8的X射线晶体结构揭示了具有几个区别特征的免疫球蛋白样结构域。迄今为止,关于SARS-CoV-2ORF8蛋白及其结构-功能关系,我们在这篇小型综述中讨论了许多悬而未决的问题。需要更好地了解ORF8如何与免疫系统的成分相互作用,以阐明COVID-19的发病机制并开发新的治疗方法。
    SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. The genome of SARS-CoV-2 encodes nine accessory proteins that are involved in host-pathogen interaction. ORF8 is unique among these accessory proteins. SARS-CoV-2 ORF8 shares a surprisingly low amino acid sequence similarity with SARS-COV ORF8 (30%), and it is presumed to have originated from bat. Studies have shown that ORF8 exerts multiple different functions that interfere with host immune responses, including the downregulation of MHC class I molecules. These functions may represent strategies of host immune evasion. The x-ray crystal structure of ORF8 revealed an immunoglobulin-like domain with several distinguishing features. To date, there are numerous unanswered questions about SARS-CoV-2 ORF8 protein and its structure-function relationship that we discuss in this mini-review. A better understanding of how ORF8 interacts with components of the immune system is needed for elucidating COVID-19 pathogenesis and to develop new avenues for the treatment of the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)通过多种调节机制逃避宿主免疫系统。SARS-CoV-2的基因组编码16种非结构蛋白(NSP),四种结构蛋白,和9种辅助蛋白在抑制I型和III型干扰素(IFNs)的产生和信号传导方面发挥不可或缺的作用。在这次审查中,我们讨论了SARS-CoV-2的不同蛋白的功能和潜在机制,这些蛋白通过抑制IFN-β的产生和TANK结合激酶1(TBK1)/干扰素调节因子3(IRF3)/信号转导和转录激活因子(STAT)1和STAT2磷酸化来逃避宿主免疫系统。我们还描述了不同的病毒蛋白抑制IRF3,核因子-κB(NF-κB)的核易位,和STATs。迄今为止,SARS-CoV-2的以下蛋白包括NSP1,NSP6,NSP8,NSP12,NSP13,NSP14,NSP15,开放阅读框(ORF)3a,ORF6,ORF8,ORF9b,ORF10和膜(M)蛋白已经被很好地研究。然而,NSP5、ORF3b、ORF9c,和核衣壳(N)蛋白没有很好地阐明。此外,我们还阐述了SARS-CoV-2蛋白的观点。
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2是正在进行的COVID-19大流行的致病因子。这种病毒是突变的累积结果,导致新变体及其亚变体的频繁出现。其中一些是高度关注的问题,而其他人则是研究突变效应的感兴趣的变体。关注的主要五种变体(VOC)是Alpha(B.1.1.7),Beta(B.1.315),Gamma(P.1),Delta(B.1.617.2),和Omicron(B.1.1.529。*/BA。*).Omicron本身目前有>100个子变体,其中BA.1(21K),BA.2(21L),BA.4(22A),BA.5(22B),和BA.2.12.1(22C)是主要的。毫无疑问,这些变异体,有时它们的子代亚变异体在它们的穗区有显著的差异,这赋予了它们特有的特性。但是在旁边,它们的非尖峰区域的突变也可能是它们特征背后的负责因素,例如复制时间,毒力,生存,宿主免疫逃避,和这样。存在一种可能性,即这些非刺突蛋白的突变也可能赋予尚待发现的上位效应。这篇综述的重点包括Omicron的非尖峰突变,特别是在其广泛流行的亚变体(BA.1,BA.2,BA.4,BA.5和BA.2.12.1)中。NSP3、NSP6、NSP13、M蛋白、ORF7b,ORF9b很少被提及,这可能导致了不同的属性,包括增长优势,更高的传输速率,较低的传染性,最重要的是通过自然杀伤细胞失活更好的宿主免疫逃避,自噬-溶酶体融合预防,宿主蛋白质合成中断,等等。Omicron亚变体的这一方面尚未被探索。进一步研究这些非尖峰突变携带蛋白的表达或相互作用谱的改变,如果存在,可以为当前对病毒特性的理解增加大量知识,从而有效的预防策略。
    SARS-CoV-2 is the causative agent behind the ongoing COVID-19 pandemic. This virus is a cumulative outcome of mutations, leading to frequent emergence of new variants and their subvariants. Some of them are a matter of high concern, while others are variants of interest for studying the mutational effect. The major five variants of concern (VOCs) are Alpha (B.1.1.7), Beta (B.1.315), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529.*/BA.*). Omicron itself has >100 subvariants at present, among which BA.1 (21K), BA.2 (21L), BA.4 (22A), BA.5 (22B), and BA.2.12.1 (22C) are the dominant ones. Undoubtedly, these variants and sometimes their progeny subvariants have significant differences in their spike region that impart them the unique properties they harbor. But alongside, the mutations in their non-spike regions could also be responsible elements behind their characteristics, such as replication time, virulence, survival, host immune evasion, and such. There exists a probability that these mutations of non-spike proteins may also impart epistatic effects that are yet to be brought to light. The focus of this review encompasses the non-spike mutations of Omicron, especially in its widely circulating subvariants (BA.1, BA.2, BA.4, BA.5, and BA.2.12.1). The mutations such as in NSP3, NSP6, NSP13, M protein, ORF7b, and ORF9b are mentioned few of all, which might have led to the varying properties, including growth advantages, higher transmission rate, lower infectivity, and most importantly better host immune evasion through natural killer cell inactivation, autophagosome-lysosome fusion prevention, host protein synthesis disruption, and so on. This aspect of Omicron subvariants has not yet been explored. Further study of alteration of expression or interaction profile of these non-spike mutations bearing proteins, if present, can add a great deal of knowledge to the current understanding of the viral properties and thus effective prevention strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超极化激活,环核苷酸敏感(HCN)通道是可兴奋细胞中阈值下膜电位的关键调节因子。四种哺乳动物HCN通道亚型,HCN1-HCN4在全身表达,它们有助于不同的生理过程,包括心脏起搏器,睡眠-觉醒周期,记忆,和躯体感觉。虽然所有HCN通道同工型在自身表达时都会产生电流,新出现的相互作用蛋白列表塑造了HCN通道的兴奋性,以影响生理相关的输出。这些调节蛋白研究得最好的是辅助亚单位,TRIP8b,它与HCN通道C末端的多个位点结合以调节表达并破坏cAMP与微调神经元HCN通道兴奋性的结合。对其他HCN通道相互作用伙伴如丝状蛋白A的作用机制知之甚少,Src酪氨酸激酶,和MinK相关肽,对HCN通道的门控和表达有一定的影响。最近,三磷酸肌醇受体相关cGMP激酶底物IRAG1和LRMP(也称为IRAG2),被发现是HCN4同种型的特定调节剂。这篇综述总结了HCN通道的已知蛋白质相互作用伙伴及其作用机制,并确定了我们知识的差距。
    Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output. The best studied of these regulatory proteins is the auxiliary subunit, TRIP8b, which binds to multiple sites in the C-terminus of the HCN channels to regulate expression and disrupt cAMP binding to fine-tune neuronal HCN channel excitability. Less is known about the mechanisms of action of other HCN channel interaction partners like filamin A, Src tyrosine kinase, and MinK-related peptides, which have a range of effects on HCN channel gating and expression. More recently, the inositol trisphosphate receptor-associated cGMP-kinase substrates IRAG1 and LRMP (also known as IRAG2), were discovered as specific regulators of the HCN4 isoform. This review summarizes the known protein interaction partners of HCN channels and their mechanisms of action and identifies gaps in our knowledge.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号