(1)H-NMR spectroscopy

  • 文章类型: Journal Article
    Melon (Cucumis melo L.) is a significant source of substances able to provide human health benefits. From the 18th century in the Salento area (Apulia region), the cultivation of melon varieties (C. melo L.) has always been intense. Over the years, the production of this fruit has involved a large number of selected and preserved varieties in the different local districts. Unfortunately, most of the characteristics of locally grown vegetable varieties do not match the food industry requirements. Moreover, the agricultural land abandon leads these varieties to quickly disappear, thus affecting the intraspecific biodiversity. In order to characterize the inter-variety diversity of sweet melon (C. melo L. ssp. melo group inodorus) and the potential differences in the nutritional quality of fruits, a first investigation on the juice of five sweet melon varieties (locally known as \"allungato\", \"scurzune\", \"egiziano\", \"minna de monaca\", \"pinto\"), cultivated exclusively in the Salento area, was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA). The analysis grouped the samples into clusters according to the different variety. Interestingly, a different sugar (mono and disaccharides) content was observed among the grouped varieties, being sweetness the main characteristic of sweet melon quality and taste. A relative higher accumulation of monosaccharides (α-d and β-d glucose and α/β-d fructose) was found, in particular for the \"minna de monaca\" with respect to \"allungato\", \"egiziano\" and \"pinto\" varieties. Moreover, a marked high content of polyphenols and aromatic aminoacids as phenylalanine and tyrosine characterize the \"allungato\", \"minna de monaca\" and \"pinto\" varieties. An NMR-based metabolomic approach was used for the first time to describe these local landraces. This method may integrate other actions in order to achieving a reduction in the current rate of erosion of the biodiversity of Apulian horticultural species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: To evaluate potential variations in the plasma metabolomic profile of endometriosis patients as a consequence of pathophysiologic alterations associated with this disorder.
    METHODS: Prospective study. For each subject, a plasma sample was collected after overnight fasting and before surgery.
    METHODS: University medical center.
    METHODS: The clinical cohort included 50 endometriosis patients, diagnosed at early (n = 6) and advanced (n = 44) stages of the disease, and 23 healthy women. All volunteers underwent diagnostic laparoscopy to visually confirm the presence or absence of endometriotic lesions.
    METHODS: Metabolomic profiling of plasma samples based on 1H-nuclear magnetic resonance (NMR) spectroscopy in combination with statistical approaches.
    METHODS: Comparative identification of metabolites present in plasma from endometriosis patients and healthy women.
    RESULTS: The plasma metabolomic profile of endometriosis patients was characterized by increased concentration of valine, fucose, choline-containing metabolites, lysine/arginine, and lipoproteins and decreased concentration of creatinine compared with healthy women. Metabolic alterations identified in the plasma metabolomic profile of endometriosis patients correlate with pathophysiologic events previously described in the progression of this disease.
    CONCLUSIONS: The results highlight the potential of 1H-NMR-based metabolomics to characterize metabolic alterations associated with endometriosis in plasma samples. This information could be useful to get a better understanding of the molecular mechanisms involved in the pathogenesis of endometriosis, thus facilitating the noninvasive diagnosis of this pathology at early stages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号