super-enhancer

超级增强子
  • 文章类型: Journal Article
    失调的超级增强子(SE)导致驱动癌症起始和进展的异常转录。SE已被证明是跨多种人类癌症的新型有前景的诊断/预后生物标志物和治疗靶标。这里,我们试图开发一种源自SE相关基因的头颈部鳞状细胞癌(HNSCC)的新预后特征.通过ROSE算法从HNSCC细胞系中的H3K27acChIP-seq数据集中鉴定SE,并进一步对SE相关基因进行定位和功能注释。通过差异表达基因(DEGs)和Cox回归分析,筛选了133个具有mRNA上调和预后意义的SE相关基因。使用三个独立的HNSCC队列(TCGA-HNSC数据集作为训练队列,通过机器学习方法对这些候选人进行了预后模型构建。GSE41613和GSE42743作为验证队列)。在数十种预后模型中,随机生存森林算法(RSF)具有最佳性能,最高平均一致性指数(C指数)证明了这一点。整合该SE相关基因标签(SEAGS)加上肿瘤大小的预后列线图显示出令人满意的预测能力和出色的校准和辨别能力。此外,来自SEARG的WNT7A被验证为推定的癌基因,其通过SE转录激活以促进恶性表型。BRD4或EP300抑制剂对SE功能的药理学破坏显著损害了HNSCC患者来源的异种移植模型中的肿瘤生长并减少了WNT7A表达。一起来看,我们的结果建立了一个小说,稳健的SE衍生的HNSCC预后模型,并建议SE的翻译潜力作为HNSCC的有希望的治疗靶标。
    Dysregulated super-enhancer (SE) results in aberrant transcription that drives cancer initiation and progression. SEs have been demonstrated as novel promising diagnostic/prognostic biomarkers and therapeutic targets across multiple human cancers. Here, we sought to develop a novel prognostic signature derived from SE-associated genes for head and neck squamous cell carcinoma (HNSCC). SE was identified from H3K27ac ChIP-seq datasets in HNSCC cell lines by ROSE algorithm and SE-associated genes were further mapped and functionally annotated. A total number of 133 SE-associated genes with mRNA upregulation and prognostic significance was screened via differentially-expressed genes (DEGs) and Cox regression analyses. These candidates were subjected for prognostic model constructions by machine learning approaches using three independent HNSCC cohorts (TCGA-HNSC dataset as training cohort, GSE41613 and GSE42743 as validation cohorts). Among dozens of prognostic models, the random survival forest algorithm (RSF) stood out with the best performance as evidenced by the highest average concordance index (C-index). A prognostic nomogram integrating this SE-associated gene signature (SEAGS) plus tumor size demonstrated satisfactory predictive power and excellent calibration and discrimination. Moreover, WNT7A from SEARG was validated as a putative oncogene with transcriptional activation by SE to promote malignant phenotypes. Pharmacological disruption of SE functions by BRD4 or EP300 inhibitor significantly impaired tumor growth and diminished WNT7A expression in a HNSCC patient-derived xenograft model. Taken together, our results establish a novel, robust SE-derived prognostic model for HNSCC and suggest the translational potentials of SEs as promising therapeutic targets for HNSCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:我们的研究致力于开发一种基于超级增强子相关基因(SERGs)的强大预测特征,具有预测生存结果和评估肝细胞癌(HCC)肿瘤免疫微环境(TiME)的双重目标。
    方法:从癌症基因组图谱(TCGA)检索HCCRNA测序数据,365例患者以1:1的比例被随机分配到训练或测试组.HCC的SERGs从超级增强子数据库(SEdb)下载。在训练集的基础上,确定了SERGs签名,其预后价值通过内部和外部验证(GSE14520)组得到证实。我们随后检查了该模型的潜在功能富集和肿瘤免疫浸润程度。此外,我们进行了体外实验来研究CBX2基因的生物学功能。
    结果:建立并验证了包括CBX2,TPX2,EFNA3,DNASE1L3和SOCS2的SE相关预后模型。根据这个风险模型,高风险组患者的预后明显较差,免疫细胞浸润与低危组差异显著。此外,高危人群表现出肿瘤相关病理通路的显著富集.SERGs签名通常可用于筛选可能对免疫疗法有反应的HCC患者,因为风险评分与肿瘤免疫功能障碍和排除(TIDE)评分之间存在正相关。此外,CBX2基因表达的下调被发现抑制HCC细胞活力,迁移,和细胞周期进程,同时促进细胞凋亡。
    结论:我们利用SERGs开发了一种新的HCC预后模型,这表明高风险评分的患者不仅预后较差,而且对免疫检查点抑制剂(ICIs)的治疗反应也可能减弱。该模型旨在针对每个患者的个性化需求定制个性化治疗策略,从而改善HCC患者的整体临床结果。此外,CBX2是HCC治疗干预的有希望的候选者。
    BACKGROUND: Our research endeavored to develop a robust predictive signature grounded in super-enhancer-related genes (SERGs), with the dual objectives of forecasting survival outcomes and evaluating the tumor immune microenvironment (TiME) in hepatocellular carcinoma (HCC).
    METHODS: HCC RNA-sequencing data were retrieved from The Cancer Genome Atlas (TCGA), and 365 patients were randomly assigned to training or testing sets in 1:1 ratio. SERGs of HCC were downloaded from Super-Enhancer Database (SEdb). On the basis of training set, a SERGs signature was identified, and its prognostic value was confirmed by internal and external validation (GSE14520) sets. We subsequently examined the model for potential functional enrichment and the degree of tumor immune infiltration. Additionally, we carried out in vitro experiments to delve into the biological functions of CBX2 gene.
    RESULTS: An SE-related prognostic model including CBX2, TPX2, EFNA3, DNASE1L3 and SOCS2 was established and validated. According to this risk model, patients in the high-risk group had a significantly worse prognosis, and their immune cell infiltration was significantly different from that of low-risk group. Moreover, the high-risk group exhibited a significant enrichment of tumor-associated pathological pathways. The SERGs signature can generally be utilized to screen HCC patients who are likely to respond to immunotherapy, as there is a positive correlation between the risk score and the Tumor Immune Dysfunction and Exclusion (TIDE) score. Furthermore, the downregulation of the CBX2 gene expression was found to inhibit HCC cell viability, migration, and cell cycle progression, while simultaneously promoting apoptosis.
    CONCLUSIONS: We developed a novel HCC prognostic model utilizing SERGs, indicating that patients with high-risk score not only face a poorer prognosis but also may exhibit a diminished therapeutic response to immune checkpoint inhibitors (ICIs). This model is designed to tailor personalized treatment strategies to the individual needs of each patient, thereby improving the overall clinical outcomes for HCC patients. Furthermore, CBX2 is a promising candidate for therapeutic intervention in HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    液-液相分离,一种新颖的生化现象,越来越多的研究其医疗应用。它是无膜细胞器形成的基础,并参与许多细胞和生物过程。在转录调控过程中,动态缩合物通过转录元件之间的相互作用形成,如转录因子,助活化剂,和调解员。癌症是一种以不受控制的细胞增殖为特征的疾病,但肿瘤发生的确切机制仍有待阐明。新的证据已经将异常的转录凝聚物与几种疾病联系起来,尤其是癌症,这意味着相分离在肿瘤发生中起着重要作用。相分离形成的缩合物可能对肿瘤中的基因转录有影响。在本次审查中,我们专注于相分离和转录调控之间的相关性,以及这种现象如何导致癌症的发展。
    Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺腺癌(LUAD)是全球癌症相关死亡的主要原因,但潜在的分子机制仍不清楚。转录因子(TF)特异性蛋白1(SP1)在各种癌症的发生发展中起着至关重要的作用,包括LUAD.最近的研究表明,主TF可以形成相分离的大分子缩合物,以促进超增强子(SE)组装和癌基因表达。在这项研究中,我们证明了SP1经历相分离,其DNA结合域中的锌指3对于该过程至关重要。通过使用针对SP1和H3K27ac的抗体,使用核酸酶(CUT和RUN)在靶标下裂解和释放,我们发现SP1富集和SE元素之间存在显著的相关性,确定G蛋白信号传导20(RGS20)基因的调节因子是SP1通过SE机制调节的最可能的靶标,并使用不同的方法验证了这一发现。SP1的致癌活性依赖于其相分离能力和RGS20基因激活,糖原合成酶激酶J4(GSK-J4)可以消除,去甲基酶抑制剂.一起,我们的发现提供了证据,表明SP1通过相分离和SE机制调节其靶癌基因表达,从而促进LUAD细胞进展。这项研究还揭示了通过干预SP1介导的SE形成来进行LUAD治疗的创新靶标。
    Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:长老会,也称为年龄相关听力损失(ARHL),是衰老对个体听觉能力的累积影响导致的一种状况。鉴于对ARHL表观遗传机制的理解有限,我们的研究重点是染色质可接近区域的改变.
    方法:我们采用了转座酶可接近染色质的高通量测序(ATAC-seq)和独特标识符(UID)mRNA-seq结合年轻和衰老耳蜗,并进行了整合分析以及基序/TF基因预测。此外,通过与以往研究的比较分析,确定了超增强剂(SEs)在ARHL发展中的重要作用.同时,建立了ARHL小鼠模型和衰老模拟毛细胞(HC)模型,并对衰老表型进行了全面鉴定,以了解SEs在ARHL进展中的作用。
    结果:对照耳蜗组织表现出比ARHL影响的耳蜗组织更大的染色质可及性。此外,组蛋白3赖氨酸27乙酰化水平在老化的耳蜗和老化模拟HEI-OC1细胞中均显著降低,强调SEs在ARHL发展中的重要作用。鉴定出ARHL潜在的衰老相关超级增强子(SASEs),其中大多数表现出染色质可及性降低。与SASE相关的大多数基因在老化的HC中显示出mRNA表达水平的明显下降,并且在用JQ1(一种常用的SE抑制剂)处理后显著改变。
    结论:受ARHL影响的对照组耳蜗组织的染色质可及性高于耳蜗组织。确定了参与ARHL的潜在SE,这可能为未来针对ARHL相关SASEs的治疗提供基础。
    BACKGROUND: Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual\'s auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions.
    METHODS: We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression.
    RESULTS: The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor).
    CONCLUSIONS: The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鼻咽癌(NPC),主要发现于中国南部地区,是一种以高度转移特性而闻名的恶性肿瘤。由远处转移和疾病复发引起的高死亡率仍然是临床上尚未解决的问题。在临床上,黄连素(BBR)化合物已广泛用于鼻咽癌治疗,以减少转移和疾病复发,并且BBR被记录为具有多种抗NPC作用的主要成分。然而,BBR抑制鼻咽癌生长和转移的机制尚不清楚。在这里,我们表明,BBR有效地抑制了生长,转移,并通过诱导特异性超级增强子(SE)入侵NPC。从机械的角度来看,RNA测序(RNA-seq)结果表明RAS-RAF1-MEK1/2-ERK1/2信号通路,由表皮生长因子受体(EGFR)激活,在BBR诱导的NPC自噬中起重要作用。自噬的阻断显著减弱了BBR介导的NPC细胞生长和转移抑制的作用。值得注意的是,BBR通过转录增加EGFR的表达,和敲除EGFR显著抑制BBR诱导的微管相关蛋白1轻链3(LC3)-II的增加和p62抑制,提示EGFR在BBR诱导的NPC自噬中起关键作用。染色质免疫沉淀测序(ChIP-seq)结果发现,仅在BBR处理的NPC细胞中存在特异性SE。这种SE敲除明显抑制了EGFR和磷酸化EGFR(EGFR-p)的表达,并逆转了BBR对NPC增殖的抑制作用。转移,和入侵。此外,BBR特异性SE可能通过增强EGFR基因转录触发自噬,从而上调RAS-RAF1-MEK1/2-ERK1/2信号通路。此外,体内BBR有效抑制NPC细胞生长和转移,随着LC3和EGFR的增加和p62的减少。总的来说,这项研究确定了一种新的BBR-特殊SE,并建立了一种新的表观遗传范式,BBR调节自噬,抑制增殖,转移,和入侵。它为BBR作为未来NPC治疗中的治疗方案的应用提供了理论基础。
    Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:超级增强子(SE)通常控制关键癌基因的表达,并在癌症的发生和发展中起重要作用。关注癌症中SE异常调控的基因可能是理解发病机制的新策略。在这次调查中,我们在神经母细胞瘤(NB)中发现了一个以前未报道的SE驱动基因IRF2BP2.
    方法:在公共数据库和临床样本中检测IRF2BP2的表达和预后价值。通过体内和体外功能丧失实验评价IRF2BP2对NB细胞生长和凋亡的影响。通过染色质调控区和转录组测序研究IRF2BP2的分子机制。
    结果:IRF2BP2的持续高表达是由NB主转录因子MYCN建立的新型SE的激活引起的,MEIS2和HAND2,它们形成了一个新的复合物,调节与NB细胞群增殖相关的基因网络。我们还观察到在IRF2BP2的结合位点处AP-1家族的显著富集。值得注意的是,在NB小区中,AP-1在塑造染色质可及性景观中起着关键作用,从而暴露IRF2BP2的结合位点。这种协调作用使AP-1和IRF2BP2能够协同刺激NB易感基因ALK的表达,从而保持NB的高度增殖表型特征。
    结论:我们的发现表明,SE驱动的IRF2BP2可以通过调节NB易感基因ALK的染色质可及性与AP-1结合来维持肿瘤细胞的存活。
    BACKGROUND: Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB).
    METHODS: The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing.
    RESULTS: The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2 and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB.
    CONCLUSIONS: Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of NB susceptibility gene ALK.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:舌鳞状细胞癌(TSCC)表现出淋巴结和远处转移的侵袭性生物学行为,这导致预后较差,并导致舌功能丧失或死亡。除了已知的调节因子和TSCC中细胞迁移的途径,发现控制肿瘤转移的关键开关很重要。
    方法:在TSCC中分析了癌细胞迁移相关的转录和表观遗传特征,并鉴定了特定的超级增强子(SE)。通过分子功能和机制研究来研究TSCC转移中的关键开关。
    结果:在TSCC中富集了伴随转录和表观遗传活性的Ameboidd型细胞迁移相关基因。同时,排序较高的SE相关基因在来自TCGATSCC队列的43个配对肿瘤样本和正常样本之间显示出显著差异.此外,在SE地区检测到关键基序,转录因子相关表达水平与TSCC生存状态显著相关。值得注意的是,BATF和ATF3通过切换与SE区的相互作用来调节变形虫型细胞迁移相关MMP14的表达。
    结论:SE和相关关键基序转录调控肿瘤转移相关的MMP14,可能是TSCC的潜在治疗靶点。
    BACKGROUND: Tongue squamous cell carcinoma (TSCC) exhibits an aggressive biological behavior of lymph node and distant metastasis, which contributes to poorer prognosis and results in tongue function loss or death. In addition to known regulators and pathways of cell migration in TSCC, it is important to uncover pivotal switches governing tumor metastasis.
    METHODS: Cancer cell migration-associated transcriptional and epigenetic characteristics were profiled in TSCC, and the specific super-enhancers (SEs) were identified. Molecular function and mechanism studies were used to investigate the pivotal switches in TSCC metastasis.
    RESULTS: Ameboidal-type cell migration-related genes accompanied by transcriptional and epigenetic activity were enriched in TSCC. Meanwhile, the higher-ranked SE-related genes showed significant differences between 43 paired tumor and normal samples from the TCGA TSCC cohort. In addition, key motifs were detected in SE regions, and transcription factor-related expression levels were significantly associated with TSCC survival status. Notably, BATF and ATF3 regulated the expression of ameboidal-type cell migration-related MMP14 by switching the interaction with the SE region.
    CONCLUSIONS: SEs and related key motifs transcriptional regulate tumor metastasis-associated MMP14 and might be potential therapeutic targets for TSCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    液-液相分离,一种新颖的生化现象,越来越多的研究其医疗应用。它是无膜细胞器形成的基础,并参与许多细胞和生物过程。在转录调控过程中,动态缩合物通过转录元件之间的相互作用形成,如转录因子,助活化剂,和调解员。癌症是一种以不受控制的细胞增殖为特征的疾病,但肿瘤发生的确切机制仍有待阐明。新的证据已经将异常的转录凝聚物与几种疾病联系起来,尤其是癌症,这意味着相分离在肿瘤发生中起着重要作用。相分离形成的缩合物可能对肿瘤中的基因转录有影响。在本次审查中,我们专注于相分离和转录调控之间的相关性,以及这种现象如何导致癌症的发展。
    Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    免疫检查点抑制剂是有效的,但它需要更精确的生物标志物来选择患者。我们通过生物信息学探讨了LINC00862在泛癌症中的生物学意义。并且我们使用染色质免疫沉淀和RNA免疫沉淀测定等方法研究了其调控机制。TCGA和单细胞测序数据分析表明,LINC00862在大多数肿瘤和基质细胞中过度表达,这与不良预后有关。LINC00862的表达与免疫细胞浸润和免疫检查点的表达有关,对免疫治疗疗效有较高的预测价值。机械上,LINC00862竞争性结合miR-29c-3p以释放SIRT1的肿瘤促进功能。SIRT1抑制剂-EX527通过虚拟筛选进行筛选,并通过体外和体内试验进行验证。值得注意的是,乙酰转移酶P300介导的超增强子活性刺激LINC00862转录。总的来说,LINC00862可能是诊断和预后的生物标志物。LINC00862也可能是免疫疗法疗效的预测生物标志物。超级增强子活性是宫颈癌和胃癌中LINC00862过表达的驱动因素。
    Immune checkpoints inhibitors are effective but it needs more precise biomarkers for patient selection. We explored the biological significance of LINC00862 in pan-cancer by bioinformatics. And we studied its regulatory mechanisms using chromatin immunoprecipitation and RNA immunoprecipitation assays etc. TCGA and single-cell sequencing data analysis indicated that LINC00862 was overexpressed in the majority of tumor and stromal cells, which was related with poor prognosis. LINC00862 expression was related with immune cell infiltration and immune checkpoints expression, and had a high predictive value for immunotherapy efficacy. Mechanistically, LINC00862 competitively bound to miR-29c-3p to unleash SIRT1\'s tumor-promoting function. SIRT1 inhibitor-EX527 were screened by virtual screening and verified by in vitro and vivo assays. Notably, acetyltransferase P300-mediated super-enhancer activity stimulated LINC00862 transcription. Collectively, LINC00862 could be a diagnostic and prognostic biomarker. LINC00862 could also be a predictive biomarker for immunotherapy efficacy. Super-enhancer activity is the driver for LINC00862 overexpression in cervical cancer and gastric cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号