spatial biology

空间生物学
  • 文章类型: Journal Article
    鉴于神经组织的复杂性,了解神经化学病理生理学对生物分析技术的特异性和敏感性提出了很高的要求。质谱成像(MSI)已经发展成为一种重要的,生化成像技术在空间生物学和转化研究中的应用。该技术有利于全面,敏感地阐明了药物的空间分布模式,脂质,肽,和原位小蛋白质。基于基质辅助激光解吸电离(MALDI)的MSI由于其广泛的适用性和选择性的合理折衷而成为主要模态,敏感价格,吞吐量,和易用性。这与空间脂质模式的分析特别相关,没有其他类似的空间分析工具可用。因此,了解神经组织中的空间脂质生物学是MSI研究的关键和新兴应用领域。这篇综述的目的是通过MSI工作流程为中枢神经系统(CNS)组织中的脂质成像提供简洁的指导,以及在开发和优化MSI测定时要考虑的基本参数。Further,这篇综述概述了基于MALDIMSI的空间神经脂质组学在神经元结构中绘制脂质动力学的关键发展和应用,最终有助于更好地理解神经退行性疾病的病理学。
    Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    据推测,肠道微生物群如何跨空间组织会影响微生物的演替及其与宿主的相互关系。缺乏动态或扰动的丰度数据对表征微生物相互作用的空间模式提出了相当大的挑战。我们整合了异速尺度理论,进化博弈论,和捕食者理论成为一个统一的框架,在该框架下,可以从静态丰度数据推断准动态微生物网络。我们说明了这样的网络可以捕获微生物相互作用的全部特性,包括因果关系,因果关系的标志,力量,和反馈回路,并沿空间梯度动态自适应,和特定于上下文的,表征个体之间以及同一个体内部跨时间和空间的可变性。我们设计并进行了肠道微生物群研究来验证模型,表征溃疡性结肠炎和健康对照之间微生物差异的关键空间决定因素。我们的模型提供了一种复杂的方法,可以解开微生物相互作用如何跨空间变化的完整图集,并量化这种空间变异性与健康状况变化之间的因果关系。
    How the gut microbiota is organized across space is postulated to influence microbial succession and its mutualistic relationships with the host. The lack of dynamic or perturbed abundance data poses considerable challenges for characterizing the spatial pattern of microbial interactions. We integrate allometric scaling theory, evolutionary game theory, and prey-predator theory into a unified framework under which quasi-dynamic microbial networks can be inferred from static abundance data. We illustrate that such networks can capture the full properties of microbial interactions, including causality, the sign of the causality, strength, and feedback loop, and are dynamically adaptive along spatial gradients, and context-specific, characterizing variability between individuals and within the same individual across time and space. We design and conduct a gut microbiota study to validate the model, characterizing key spatial determinants of the microbial differences between ulcerative colitis and healthy controls. Our model provides a sophisticated means of unraveling a complete atlas of how microbial interactions vary across space and quantifying causal relationships between such spatial variability and change in health state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号