pluripotency

多能性
  • 文章类型: Journal Article
    人多能干细胞(hPSC)的稳态需要细胞外因子的信号传导平衡。来自细胞培养基的外源调节剂已被广泛报道,但是hPSC本身对自分泌因子的关注很少。在这份报告中,我们证明了细胞外信号相关激酶5(ERK5)调节多能性和分化必需的内源性自分泌因子.即使在谱系特异性诱导下,ERK5抑制也会导致所有谱系中错误的细胞命运规范。在成纤维细胞生长因子2(FGF2)和转化生长因子β(TGF-β)存在下,hPSC可以在ERK5抑制下自我更新,虽然NANOG表达被部分抑制。进一步的分析表明,ERK5促进自分泌因子如NODAL的表达,FGF8和WNT3。NODAL蛋白的添加挽救了ERK5抑制下的NANOG表达和分化表型。我们证明,即使没有必需生长因子FGF2和TGF-β,组成型活性ERK5途径也可以自我更新。这项研究强调了自分泌途径对适当维持和分化的重要贡献。
    The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor β (TGF-β), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-β. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞命运决定是一个复杂的过程,由多个调控层协调,包括信号通路,转录因子,表观遗传修饰,和代谢重新布线。在复杂的表观遗传调制中,抑制标记H3K27me3由PRC2(多梳状抑制复合物2)沉积,并由去甲基酶KDM6去除,通过其动态和精确的改变在介导细胞身份转换中起关键作用。在这里,我们概述并讨论了H3K27me3及其修饰剂如何调节多能性维持和早期谱系分化。我们主要强调以下四个方面:1)两个亚复合物PRC2.1和PRC2.2以及基因组H3K27甲基化的分布;2)PRC2作为多能性维持和退出的关键调节因子;3)橡皮擦KDM6在早期分化中的新兴作用;4)新发现的影响H3K27me3的其他因素。我们对H3K27me3动态调节的分子原理以及这种表观遗传标记如何参与以多能干细胞为中心的细胞命运决定进行了全面的了解。
    Cell fate determination is an intricate process which is orchestrated by multiple regulatory layers including signal pathways, transcriptional factors, epigenetic modifications, and metabolic rewiring. Among the sophisticated epigenetic modulations, the repressive mark H3K27me3, deposited by PRC2 (polycomb repressive complex 2) and removed by demethylase KDM6, plays a pivotal role in mediating the cellular identity transition through its dynamic and precise alterations. Herein, we overview and discuss how H3K27me3 and its modifiers regulate pluripotency maintenance and early lineage differentiation. We primarily highlight the following four aspects: 1) the two subcomplexes PRC2.1 and PRC2.2 and the distribution of genomic H3K27 methylation; 2) PRC2 as a critical regulator in pluripotency maintenance and exit; 3) the emerging role of the eraser KDM6 in early differentiation; 4) newly identified additional factors influencing H3K27me3. We present a comprehensive insight into the molecular principles of the dynamic regulation of H3K27me3, as well as how this epigenetic mark participates in pluripotent stem cell-centered cell fate determination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在研究声振动对人胚胎干细胞(hESCs)多能性的影响,并评估治疗后细胞的增殖和自我更新能力。
    方法:实验使用人ES细胞系H1。用声振动装置处理hESC。随后使用集落形成测定法检测它们的增殖能力,而通过免疫荧光染色检测到多能性相关标志物的表达。最后,在适当的引物存在下,使用定量聚合酶链反应(qPCR)检测基因表达水平的变化.
    结果:与对照组的正常细胞相比,受声振动作用的实验细胞形态无明显变化。相反,实验细胞的集落形成效率显着提高。免疫荧光染色结果显示实验组细胞多能性标志物NANOG阳性,八聚体结合转录因子4基因(OCT4),和SRY(性别决定区Y)-框2(SOX2)。此外,多能性基因NANOG的表达水平,OCT4,SOX2和Yes相关蛋白(YAP)相关基因在声振动后上调。
    结论:我们的结果表明,声振动增强了hESCs的增殖能力,并增加了NANOG的表达水平,OCT4、SOX2和YAP相关基因,表明声振动可以优化hESCs的自我更新能力,YAP信号通路可能在声振动的功能过程中起关键作用。
    OBJECTIVE: This study aimed to investigate the effect of acoustic vibration on the pluripotency of human embryonic stem cells (hESCs) and evaluate cell proliferation and self-renewal ability post-treatment.
    METHODS: The human ES cell line H1 was used for the experiments. hESCs were treated with an acoustic vibration device. Their proliferative ability was subsequently detected using a colony formation assay, while the expression of pluripotency-related markers was detected via immunofluorescence staining. Finally, changes in gene expression levels were examined using quantitative polymerase chain reaction (qPCR) in the presence of appropriate primers.
    RESULTS: Compared with normal cells in the control group, the morphology of experimental cells subjected to acoustic vibration did not significantly change. Contrastingly, the colony-forming efficiency of the experimental cells significantly increased. Immunofluorescence staining results showed the cells in experimental group were positive for the pluripotency markers NANOG, octamer-binding transcription factor 4 gene (OCT4), and SRY (sex determining region Y)-box 2 (SOX2). In addition, the expression levels of pluripotency genes NANOG, OCT4, SOX2, and Yes-associated protein (YAP)-related genes were up-regulated following acoustic vibration.
    CONCLUSIONS: Our results revealed that acoustic vibration enhanced the proliferative ability of hESCs and increased the expression levels of NANOG, OCT4, SOX2, and YAP-related genes, indicating that acoustic vibration can optimize the self-renewal ability of hESCs and that the YAP signaling pathway may play a critical role in the functional process of acoustic vibration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在植入过程中,胚胎经历非极化到极化的转变,以启动植入后的形态发生。然而,潜在的分子机制是未知的。这里,我们确定了在植入过程中控制胚胎形态发生和多能性转变的瞬时转录激活。在幼稚多能胚胎干细胞(ESC)中,代表着床前胚胎,我们发现,微处理器成分DGCR8可以识别新生mRNAs内的茎环结构,以隔离转录共激活子FLII,从而直接抑制转录。当mESC从幼稚多能性退出时,ERK/RSK/P70S6K通路快速激活,导致FLII磷酸化和DGCR8/FLII相互作用的破坏。磷酸化FLII可以与转录因子JUN结合,激活细胞迁移相关基因以建立类似于植入胚胎的平衡多能性。DGCR8对FLII的重新测序驱动平衡的ESC进入形成性多能性。总之,我们确定了DGCR8/FLII/JUN介导的瞬时转录激活机制。这种机制的破坏抑制了胚胎植入过程中幼稚形成的多能性转变和相应的非极化到极化的转变,在小鼠和人类中都是保守的。
    During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解人类胚胎干细胞(hESCs)多能性的调节对于推进发育生物学和再生医学领域至关重要。尽管最近取得了进展,调节hESC多能性的分子事件,尤其是在幼稚状态和初始状态之间的过渡,仍然不清楚。在这里,我们显示,与引发的hESC相比,幼稚hESC显示更低水平的O-连接的N-乙酰葡糖胺(O-GlcNAcylation)。O-GlcNAcase(OGA),催化从蛋白质中去除O-GlcNAc的关键酶,在幼稚hESC中高度表达,对幼稚多能性很重要。OGA的耗尽加速了从幼稚到引发的多能性转变。OGA由EP300转录调节,并且充当对于维持幼稚多能性重要的基因的转录调节物。此外,我们通过定量蛋白质组学分析了两种多能性状态的蛋白质O-GlcNAcylation。一起,这项研究确定OGA是hESCs幼稚多能性的重要因素,并表明O-GlcNAcylation对hESCs稳态具有广泛影响。
    Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长链非编码RNA(lncRNA)是一类重要的普遍存在的基因,涉及多种生物学功能。lncRNAs,定义为长度超过200个核苷酸的非编码RNA,在整个细胞中大量表达;然而,它们的精确功能在很大程度上仍然难以捉摸。从胚胎干细胞的增殖和分化到癌细胞的增殖和侵袭,lncRNAs在各个细胞阶段发挥多方面的调节作用。此外,lncRNAs在细胞发育过程中参与分化和再生的调节,同时在维持和调节细胞干性方面也起着关键作用。在这篇文章中,我们全面回顾了该领域有关lncRNAs的最新知识,讨论它们的生物学功能和机制,以及这些过程中涉及的因素。我们强调越来越多的证据支持lncRNAs在控制细胞干性方面的重要性,同时表明其中的破坏或突变可能是某些发育障碍的根本原因。
    Long non-coding RNA (lncRNA) are an important class of ubiquitous genes involved in diverse biological functions. lncRNAs, defined as noncoding RNAs with a length exceeding 200 nucleotides, are abundantly expressed throughout cells; however, their precise functions remain largely elusive. From embryonic stem cell proliferation and differentiation to cancer cell proliferation and invasion, lncRNAs play multifaceted regulatory roles across various cellular stages. Moreover, lncRNAs participate in the regulation of differentiation and regeneration during cellular development processes while also playing a pivotal role in maintaining and regulating cell stemness. In this article, we comprehensively review the current knowledge regarding lncRNAs in this field, discussing their biological functions and mechanisms underlying stemness regulation along with the factors implicated in these processes. We emphasize the growing evidence supporting the significance of lncRNAs in governing cell stemness while indicating that disruptions or mutations within them may serve as fundamental causes for certain developmental disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:具有不同转录谱的胚胎干细胞(ESC)的多能状态影响ESC分化能力和治疗潜力。尽管单细胞RNA测序已经揭示了初始和引发的人类多能干细胞(hPSC)的其他亚群和特定特征,调节其特定转录和控制其多能状态的潜在机制仍然难以捉摸。
    结果:通过高分辨率的单细胞分析,三维(3D)基因组结构,我们在此证明基因组结构的重塑与人ESC(hESC)的多能状态高度相关。幼稚多能状态的特征是具有专门的3D基因组结构和与引发状态不同的清晰染色质区室化。幼稚多能状态是通过重塑活性常染色质区室和减少核中心的染色质相互作用来实现的。这种独特的基因组组织与增强子上增强的染色质可及性和位于该区域的幼稚多能基因的表达水平升高有关。相反,启动状态表现出混合的基因组组织。此外,活跃的常染色质和引发的多能基因分布在核外围,而抑制性异染色质密集地集中在核中心,降低染色质可及性和幼稚基因的转录。
    结论:我们的数据提供了对初始和初始状态下ESCs染色质结构的见解,我们确定了转录和染色质结构修饰的特定模式,这些模式可能解释了幼稚和已引发的hESC之间差异表达的基因。因此,异染色质通过区室化向常染色质的反转或重新定位与染色质可及性的调节有关,从而定义多能状态和细胞身份。
    Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive.
    By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes.
    Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从体细胞中获得多能愈伤组织在植物发育研究和作物遗传改良中起着重要作用。该发育过程包括一系列细胞命运转变和重编程。然而,我们对愈伤组织诱导过程中细胞异质性和细胞命运转变机制的了解仍然非常有限。这里,我们对拟南芥根外植体进行了时间序列单细胞转录组实验,这些外植体在愈伤组织诱导培养基中诱导0天,1天,4天,构建了愈伤组织诱导过程的单细胞转录图谱。我们确定了负责启动早期愈伤组织的细胞类型:侧根原基启动(LRPI)样细胞和静止中心(QC)样细胞。LRPI样细胞来源于木质部极周细胞,与侧根原基相似。我们描绘了LRPI样细胞去分化为QC样细胞的发育轨迹。QC样细胞是未分化的多能获得性细胞,其出现在愈伤组织形成的早期阶段,并且在后期愈伤组织发育和器官再生中起关键作用。我们进一步推断了调节QC样细胞的转录因子和与细胞命运决定相关的基因表达特征。总的来说,我们的细胞谱系转录组图集的愈伤组织诱导提供了一个独特的视角,在愈伤组织形成过程中的细胞命运转变,并显著提高了对愈伤组织形成的理解。
    The acquisition of pluripotent callus from somatic cells plays an important role in plant development studies and crop genetic improvement. This developmental process incorporates a series of cell fate transitions and reprogramming. However, our understanding of cell heterogeneity and mechanisms of cell fate transition during callus induction remains quite limited. Here, we report a time-series single-cell transcriptome experiment on Arabidopsis root explants that were induced in callus induction medium for 0, 1, and 4 days, and the construction of a detailed single-cell transcriptional atlas of the callus induction process. We identify the cell types responsible for initiating the early callus: lateral root primordium-initiating (LRPI)-like cells and quiescent center (QC)-like cells. LRPI-like cells are derived from xylem pole pericycle cells and are similar to lateral root primordia. We delineate the developmental trajectory of the dedifferentiation of LRPI-like cells into QC-like cells. QC-like cells are undifferentiated pluripotent acquired cells that appear in the early stages of callus formation and play a critical role in later callus development and organ regeneration. We also identify the transcription factors that regulate QC-like cells and the gene expression signatures that are related to cell fate decisions. Overall, our cell-lineage transcriptome atlas for callus induction provides a distinct perspective on cell fate transitions during callus formation, significantly improving our understanding of callus formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体基因组转录了13种编码氧化磷酸化所必需的众所周知的蛋白质的mRNA。我们在这里证明了细胞色素b(CYTB),复合物III中唯一的线粒体DNA编码转录本,还编码一种未识别的187个氨基酸长的蛋白质,CYTB-187AA,使用细胞质核糖体的标准遗传密码而不是线粒体遗传密码。在使用质谱和抗体验证由胞质翻译(mPACT)产生的mtDNA编码蛋白的存在后,我们表明CYTB-187AA主要位于线粒体基质中,并通过与溶质载体家族25成员3(SLC25A3)相互作用来调节ATP的产生,从而促进从初始到初始转变的多能状态.我们进一步建立了CYTB-187AA沉默的转基因敲入小鼠模型,并发现CYTB-187AA的减少通过减少卵巢卵泡的数量来损害雌性的生育能力。第一次,我们发现了线粒体mRNA的新mPACT模式,并证明了由mtDNA编码的第14种蛋白质的生理功能。
    The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females\' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在细胞命运转变期间,细胞重塑它们的转录组,染色质,和表观基因组;然而,在单细胞水平上,很难确定这些变化之间的时间动态和因果关系。这里,我们采用异核体介导的重编程系统作为单细胞模型,利用超分辨率成像技术,在多能性转换的早期阶段解剖关键时间事件.我们透露,在异核子形成之后,体细胞核经历整体染色质分解并去除抑制性组蛋白修饰H3K9me3和H3K27me3,而没有获得活性修饰H3K4me3和H3K9ac。多能性基因OCT4(POU5F1)在细胞融合后的第一个24小时内显示出新生和成熟的RNA转录,而不需要在其基因座处的初始开放染色质构型。南诺,相反,只有在细胞融合后48小时才有显著的新生RNA转录,但是,惊人的,早期表现出基因组重新开放。这些发现表明,细胞重编程过程中染色质压缩与基因激活之间的时间关系取决于基因环境。
    During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号