pitting

点蚀
  • 文章类型: Journal Article
    生物硫循环与自然环境中的铁腐蚀密切相关。硫氧化细菌的作用。,名为PHS-Q,对金属腐蚀行为的研究很少。在这项研究中,通过表征腐蚀产物的形貌和成分,讨论了Q235碳钢在PHS-Q接种介质中的腐蚀机理,局部腐蚀的测量及其电化学行为的研究。结果表明,最初,PHS-Q在没有硫化物的介质中同化硫酸盐以直接或间接产生H2S。H2S与Fe2+反应以在试样表面上形成惰性膜。然后,在局部地区,细菌粘附在反应产物上,并使用FeS的氧化作为氢供体。这个过程导致一个大的阴极和一个小的阳极,导致点蚀。因此,在厌氧环境中,PHS-Q对碳钢腐蚀行为的影响至关重要。
    The biological sulfur cycle is closely related to iron corrosion in the natural environment. The effect of the sulfur-oxidising bacterium Ectothiorhodospira sp., named PHS-Q, on the metal corrosion behaviour rarely has been investigated. In this study, the corrosion mechanism of Q235 carbon steel in a PHS-Q-inoculated medium is discussed via the characterization of the morphology and the composition of the corrosion products, the measurement of local corrosion and the investigation of its electrochemical behaviour. The results suggested that, initially, PHS-Q assimilates sulfate to produce H2S directly or indirectly in the medium without sulfide. H2S reacts with Fe2+ to form an inert film on the coupon surface. Then, in localised areas, bacteria adhere to the reaction product and use the oxidation of FeS as a hydrogen donor. This process leads to a large cathode and a small anode, which incurs pitting corrosion. Consequently, the effect of PHS-Q on carbon steel corrosion behaviour is crucial in an anaerobic environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,我们研究了海洋氨化细菌Alcaligenesaquatilis对铜的微生物腐蚀机理。通过浸泡实验,我们发现aquatilis可以加速铜的腐蚀速度,导致坑的发展。在Aquatilis的存在下,腐蚀产物的形态和组成与非生物样品不同,我们发现Cu2O是主要的腐蚀产物。通过分析生物培养基和实验NH3添加量,我们验证了NH3是加剧铜腐蚀的主要成分。此外,我们发现NH3在A.aquatilis的存在下对Cu的腐蚀起催化作用。
    In this work, we studied the microbiologically influenced corrosion mechanism of Cu by marine ammonifying bacterium Alcaligenes aquatilis. Through immersion experiments, we found that A. aquatilis could accelerate the corrosion rate of copper, resulting in the development of pits. In the presence of A. aquatilis, the morphology and composition of the corrosion products differed from the abiotic samples, and we found that Cu2O was the main corrosion product. By analyzing the biotic medium and experimental NH3 addition, we verified that NH3 was the main component that intensified copper corrosion. Furthermore, we found that NH3 played a catalytic role in the corrosion of Cu in the presence of A. aquatilis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在目前的工作中,全面研究了商用6005A-T6铝挤压型材的局部腐蚀和应力腐蚀开裂(SCC)行为。估算了恒定位移下自应力双悬臂梁(DCB)试样的裂纹扩展速度,这也提供了洞察局部微观结构演变在裂纹尖端引起的局部点蚀,晶间腐蚀(IGC),和粒间SCC。通过光学显微镜(OM)揭示了沿开裂路径暴露于3.5%NaCl一段时间的局部腐蚀特征,扫描电子显微镜(SEM),和电子背散射衍射(EBSD)。以析出物分布为主的凹坑的典型特征包括Al基体的周边溶解,沟渠腐蚀,晶间攻击,和谷物中的大坑。裂纹尖端的不连续裂纹表明了氢脆介导的机制。此外,富含Mg2Si和Mg5Si6相和低角度晶界的局部区域比具有高角度晶界的基体具有更好的抗SCC性,支持通过界面工程开发先进Al-Mg-Si合金的战略。
    In the present work, the localized corrosion and stress corrosion cracking (SCC) behaviors of a commercial 6005A-T6 aluminum extrusion profile was studied comprehensively. The velocity of crack growth in self-stressed double-cantilever beam (DCB) specimens under constant displacement was estimated, which also provides insight into the local microstructure evolutions at the crack tips caused by the localized pitting corrosion, intergranular corrosion (IGC), and intergranular SCC. Characterizations of local corrosion along the cracking path for a period of exposure to 3.5% NaCl were revealed via optical microscope (OM), scanning electron microscope (SEM), and electron backscatter diffraction (EBSD). The typical features of the pits dominated by the distribution of precipitates included the peripheral dissolution of the Al matrix, channeling corrosion, intergranular attack, and large pits in the grains. The discontinuous cracking at the crack tips indicated the hydrogen-embrittlement-mediated mechanism. Moreover, the local regions enriched with Mg2Si and Mg5Si6 phases and with low-angle grain boundaries presented better SCC resistance than those of the matrix with high-angle grain boundaries, supporting a strategy to develop advanced Al-Mg-Si alloys via interfacial engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Blueberry (Vaccinium spp.) is a small berry with high economic value. Although cold storage can extend the storage time of blueberry to more than 60 days, it leads to chilling injury (CI) displaying as pedicle pits; and the samples of 0 °C-30 days was the critical point of CI. However, little is known about the mechanism and the molecular basis response to cold stress in blueberry have not been explained definitely. To comprehensively reveal the CI mechanisms in response to cold stress, we performed high-throughput RNA Seq analysis to investigate the gene regulation network in 0d (control) and 30d chilled blueberry. At the same time, the pitting and decay rate, electrolyte leakage (EL), malondialdehyde (MDA) proline content and GSH content were measured.
    RESULTS: Two cDNA libraries from 0d (control) and 30d chilled samples were constructed and sequenced, generating a total of 35,060 unigenes with an N50 length of 1348 bp. Of these, 1852 were differentially expressed, with 1167 upregulated and 685 downregulated. Forty-five cold-induced transcription factor (TF) families containing 1023 TFs were identified. The DEGs indicated biological processes such as stress responses; cell wall metabolism; abscisic acid, gibberellin, membrane lipid, energy metabolism, cellular components, and molecular functions were significantly responsed to cold storage. The transcriptional level of 40 DEGs were verified by qRT-PCR.
    CONCLUSIONS: The postharvest cold storage leads serious CI in blueberry, which substantially decreases the quality, storability and consumer acceptance. The MDA content, proline content, EL increased and the GSH content decreased in this chilled process. The biological processes such as stress responses, hormone metabolic processes were significantly affected by CI. Overall, the results obtained here are valuable for preventing CI under cold storage and could help to perfect the lack of the genetic information of non-model plant species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The effects of an ultrasonic surface rolling process (USRP) on the localized corrosion behavior of 7B50-T7751 aluminum alloy in a sodium chloride + hydrogen peroxide solution were investigated through microstructural observation, immersion testing, and electrochemical measurements. The results revealed that this alloy is prone to pitting. However, the localized corrosion resistance can be significantly improved via both one-pass USRP and 12-pass USRP treatment. Furthermore, in the test solution, the thickness and the acceptor density of the passivation film were affected by the USRP treatment. The improved corrosion resistance of one-pass USRP-treated samples resulted mainly from the introduced compressive residual stress. However, this stress played a secondary role in the considerable enhancement observed for the corrosion resistance of the 12-pass USRP-treated samples. This enhancement is attributed primarily to the nanocrystalline surface and homogeneous surface microstructure induced by the multiple-pass USRP treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In this paper, the effect of chloride ions on the development of corrosion pits in different reinforced concrete under different environmental conditions is studied. A fitting model for the size distribution of pits in seawater and sea-sand concrete (SSC) under different curing modes is established, and time-dependent fractal features are examined. Under wet/dry chloride cycles, the weight loss rate and corrosion rate of steel bars are higher, and the number of corrosion pits appears to increase on a small scale within 60-day. A majority of the corrosion is metastable pitting, and we propose a model to describe the size distribution of pitting in different periods. The good agreement between the proposed model and the available data illustrates that the proposed model is reliable and accurate. Macroscopic pitting occurs first in wet/dry chloride cycles. With the increase of concrete age, the size distribution of pits under wet/dry chloride cycles is uneven, and the pit sizes in submerged concrete tend to be equal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    锂剥离是在Li金属电池循环期间与锂沉积结合的关键过程。锂沉积已被广泛研究,而剥离作为地下过程很少被研究。在这里,我们通过可视化剥离的锂与固体电解质界面(SEI)之间的界面来揭示锂剥离的基本机理。我们观察到剥离后锂和SEI层之间形成的纳米空隙,这归因于锂金属空位的积累。锂的高速溶解导致剧烈生长和随后的空隙聚集,接着是SEI层的坍塌,即,点蚀。我们系统地测量了剥离过程中的锂极化行为,发现锂阳离子通过SEI层的扩散是速率决定步骤。典型锂表面上的不均匀位点,如晶界和滑移线,大大加速了锂的局部溶解。对这种掩埋界面剥离过程的更深入了解为未来的锂阳极和电解质设计提供了有益的线索。
    Lithium stripping is a crucial process coupled with lithium deposition during the cycling of Li metal batteries. Lithium deposition has been widely studied, whereas stripping as a subsurface process has rarely been investigated. Here we reveal the fundamental mechanism of stripping on lithium by visualizing the interface between stripped lithium and the solid electrolyte interphase (SEI). We observed nanovoids formed between lithium and the SEI layer after stripping, which are attributed to the accumulation of lithium metal vacancies. High-rate dissolution of lithium causes vigorous growth and subsequent aggregation of voids, followed by the collapse of the SEI layer, i.e., pitting. We systematically measured the lithium polarization behavior during stripping and find that the lithium cation diffusion through the SEI layer is the rate-determining step. Nonuniform sites on typical lithium surfaces, such as grain boundaries and slip lines, greatly accelerated the local dissolution of lithium. The deeper understanding of this buried interface stripping process provides beneficial clues for future lithium anode and electrolyte design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The corrosion development of the reinforcement and shear stud connectors in the cracked steel-concrete composite beams under the salt-fog wet-dry cycles is presented in this investigation. Seven identical composite beams with load-induced concrete cracks were exposed to an aggressive chloride environment. The reinforcement and shear connectors were retrieved after specimens underwent a specified number of wet-dry cycles to obtain the corrosion pattern and the cross-section loss at different exposure times and their evolutions. The crack map, the corrosion pattern and the cross-section loss were measured and presented. Based on the experimental results, the influence of crack characteristics, including crack widths, orientations and positions on the corrosion rate and distribution, were accessed. Moreover, the effects of the connecting weldments on the corrosion initiations and patterns were analyzed. It was shown that the corrosion rate would increase with the number of wet-dry cycles. The characteristics of load-induced cracks could have different influences on the steel grids and shear stud connectors. The corrosion tended to initiate from the connecting weldments, due to the potential difference with the parent steel and the aggressive exposure environment, leading to a preferential weldment attack.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH4+ existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号