myogenic progenitors

  • 文章类型: Journal Article
    细胞疗法具有使受损心肌再肌化的巨大希望,但实际上受到移植后稳定移植在受体心脏中的心脏定向细胞的有限同种异体来源的阻碍。这里,我们证明,心包组织含有肌源性干细胞(pSCs),这些细胞在心肌梗死(MI)后响应炎症信号而被激活.源自MI大鼠的pSC(MI-pSC)显示体内和体外心脏定型,其特征在于心脏特异性Tnnt2表达和在培养物中形成节律性收缩。BulkRNA-seq分析揭示了一组与心脏/肌源性分化相关的基因的显着上调,旁分泌因子,和活化pSC中的细胞外基质与对照pSC(Sham-pSC)相比。值得注意的是,我们将MyoD定义为控制心脏承诺过程的关键因素,siRNA介导的MyoD基因沉默导致生肌潜能显著降低。将心脏定向细胞注射到梗塞的大鼠心脏中导致长期存活和在受体心肌中的稳定植入。因此,这些发现表明心包肌源性祖细胞是基于心脏细胞的治疗的一个有吸引力的候选者,可以使受损的心肌再肌化.
    Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组织损伤通常会引起局部炎症,进而决定一系列后续反应,如干细胞活化和生长,维持组织稳态.该研究的目的是证明使用经炎症训练的干细胞作为最佳供体细胞来增强细胞疗法功效的可能性。来自心肌梗死后动物的心包干/基质细胞(MI-pSC)在受伤的心脏移植后显示出增强的肌源性潜能和增强的修复活性,与假PSC相比。BulkRNA-Seq分析显示MI-pSC中一组生肌和营养基因的显着上调,特别是,Sfrp1作为重要的抗凋亡因子,在MI-pSC中受到强烈诱导。注射MI-pSC在梗死区域内产生了可测量数量的存活心肌细胞(Tunel和Casp-3阴性)。但是在pSC中基于siRNA的Sfrp1基因沉默的作用显着减弱。MI大鼠心包液引发的Sham-pSC模仿了Sfrp1的上调,并增强了pSC的生肌潜能和修复活性。一起来看,我们的结果表明,经炎症训练的pSC通过上调Sfrp1基因而具有修复活性,从而在受损的心肌细胞中赋予抗凋亡活性。因此,干细胞的活性形式可用作心脏保护剂以增强干细胞的治疗潜力。
    Tissue damage often induces local inflammation that in turn dictates a series of subsequential responses, such as stem cell activation and growth, to maintain tissue homeostasis. The aim of the study is to testify the possibility of using inflammation-trained stem cells as optimal donor cells to augment the efficacy of cell therapy. The pericardial stem/stromal cells derived from the animals after myocardial infarction (MI-pSC) showed an enhanced myogenic potential and augmented reparative activity after transplantation in the injured hearts, as compared to the Sham-pSC. Bulk RNA-Seq analysis revealed significant upregulation of a panel of myogenic and trophic genes in the MI-pSC and, notably, Sfrp1 as an important anti-apoptotic factor induced robustly in the MI-pSC. Injection of the MI-pSC yielded measurable numbers of surviving cardiomyocytes (Tunel and Casp-3 negative) within the infarct area, but the effects were significantly diminished by siRNA-based silence of Sfrp1 gene in the pSC. Primed Sham-pSC with pericardial fluid from MI rats mimicked the upregulation of Sfrp1 and enhanced myogenic potential and reparative activity of pSC. Taken together, our results illustrated the inflammation-trained pSC favor a reparative activity through upregulation of Sfrp1 gene that confers anti-apoptotic activity in the injured cardiomyocytes. Therefore, the active form of stem cells may be used as a cardiac protective agent to boost therapeutical potential of stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder with no effective treatment that is caused by the loss of dystrophin. Human induced pluripotent stem cells (hiPSCs) offer a promising unlimited resource for cell-based therapies of muscular dystrophy. However, their clinical applications are hindered by inefficient myogenic differentiation, and moreover, the engraftment of non-transgene hiPSC-derived myogenic progenitors has not been examined in the mdx mouse model of DMD.
    METHODS: We investigated the muscle regenerative potential of myogenic progenitors derived from hiPSCs in mdx mice. The hiPSCs were transfected with enhanced green fluorescent protein (EGFP) vector and defined as EGFP hiPSCs. Myogenic differentiation was performed on EGFP hiPSCs with supplementary of basic fibroblast growth factor, forskolin, 6-bromoindirubin-3\'-oxime as well as horse serum. EGFP hiPSCs-derived myogenic progenitors were engrafted into mdx mice via both intramuscular and intravenous injection. The restoration of dystrophin expression, the ratio of central nuclear myofibers, and the transplanted cells-derived satellite cells were accessed after intramuscular and systemic transplantation.
    RESULTS: We report that abundant myogenic progenitors can be generated from hiPSCs after treatment with these three small molecules, with consequent terminal differentiation giving rise to mature myotubes in vitro. Upon intramuscular or systemic transplantation into mdx mice, these myogenic progenitors engrafted and contributed to human-derived myofiber regeneration in host muscles, restored dystrophin expression, ameliorated pathological lesions, and seeded the satellite cell compartment in dystrophic muscles.
    CONCLUSIONS: This study demonstrates the muscle regeneration potential of myogenic progenitors derived from hiPSCs using non-transgenic induction methods. Engraftment of hiPSC-derived myogenic progenitors could be a potential future therapeutic strategy to treat DMD in a clinical setting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号