motilin receptor

  • 文章类型: Journal Article
    胃动素在调节血管张力和血流动力学方面的作用以及胃肠动力方面的作用备受关注。本研究旨在探讨胃动素受体在胃肠动脉中的表达及胃动素诱导的舒张作用。
    胃动素受体在胃左动脉(LGA)中的表达,肠系膜上动脉(SMA),和成年犬(1.5-5岁)的肠系膜下动脉(IMA)通过免疫化学分析,RT-PCR,和西方印迹。在多线肌电图系统中评估胃动素对胃肠动脉的影响。
    免疫组织化学染色显示,内皮细胞膜上表达胃动素受体,荧光强度为LGA>SMA>IMA(P<0.01)。胃动素受体的mRNA和蛋白质表达水平与荧光强度具有相同的分布模式(P<0.01)。在用U46619(血栓烷A2类似物)预收缩的分离的LGA制剂中,胃动素诱导浓度依赖性松弛,EC50为8.8×10-8±0.9×10-8M。胃动素诱导的三动脉舒张在荧光强度上也具有相同的模式(P<0.01),并被剥脱内皮和GM-109(胃动素受体拮抗剂)抑制,但不被阿托品(毒蕈碱受体拮抗剂)抑制。
    胃动素受体在狗胃肠动脉的内皮细胞的膜上差异表达,在LGA中显著高表达。胃动素诱导的松弛是内皮和胃动素受体依赖性的。LGA的内皮细胞膜上表达的胃动素受体是在狗的生理条件下胃动素调节胃血流量的分子基础。
    Motilin\'s role in the regulation of vascular tone and hemodynamic besides gastrointestinal motility is concerned. This study aimed to investigate the expression of motilin receptors in gastrointestinal arteries and motilin-induced relaxation.
    The expression of motilin receptors in the left gastric artery (LGA), superior mesenteric artery (SMA), and inferior mesenteric artery (IMA) of adult dogs (1.5-5 years old) were analyzed by immunochemistry, RT-PCR, and western blotting. Motilin\'s effects on the gastrointestinal arteries were evaluated in a multi-wire myograph system.
    Immunohistochemical staining showed that motilin receptor was expressed on the membranes of endothelial cells with the fluorescence intensity LGA > SMA > IMA (P < 0.01). The motilin receptor\'s mRNA and protein expression levels shared the same distribution patterns as it in fluorescence intensity (P < 0.01). In isolated LGA preparations precontracted with U46619 (a thromboxaneA2 analog), motilin induced a concentration-dependent relaxation, and the EC50 was 8.8 × 10-8 ± 0.9 × 10-8 M. Motilin-induced relaxation on the three arteries also shared the same pattern as it in fluorescence intensity (P < 0.01) and inhibited by denuded-endothelium and GM-109 (a motilin receptor antagonist) but not by atropine (a muscarinic receptor antagonist).
    Motilin receptors are expressed differentially on the membranes of endothelial cells in dog gastrointestinal arteries with a significantly high expression in the LGA. Motilin-induced relaxation is endothelium- and motilin receptor-dependent. The motilin receptor expressed on the endothelial cell membrane of the LGA is the molecular basis for motilin regulating gastric blood flow under physiological conditions in dogs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    1. A previous whole-genome association analysis has identified the motilin receptor gene (MLNR), which regulates gastrointestinal motility and gastric emptying, as a candidate gene related to chicken growth.2. MLNR mRNA was expressed in all tissues tested, and the expression level in digestive tissues was greater than in other tissues. Expression levels in the pancreas, duodenum and glandular stomach at day old and one, two and three weeks of age indicated a possible correlation with the digestive system. This suggested that the MLNR gene plays a central role in gastrointestinal tract function and affects the growth and development of chickens. Moreover, there was a significant difference in expression in the glandular stomach tissue between Ross 308 and Gushi chickens at six weeks of age.3. Re-sequencing revealed an 86-bp insertion/deletion polymorphism in the downstream region of the MLNR gene. The mutation locus was genotyped in 2,261 individuals from nine different chicken breeds. MLNR expression levels in the glandular stomach of chickens with DD genotypes were greater than those in chickens with the ID and II genotypes. The DD genotype was the most dominant genotype in commercial broiler\'s (Ross 308 and Arbor Acres broilers), and the D allele frequency in these breeds exceeded 91%. The deletion mutation tended towards fixation in commercial broilers.4. Association with growth and carcass traits analysed in a Gushi-Anka F2 intercrossed population, showed that the DD genotype was significantly associated with the greatest growth and carcass trait values, whereas values associated with the II genotype were the lowest in the F2 reciprocal cross chickens.5. The results suggest that the mutation is strongly associated with growth related traits and it is likely to be useful for marker-assisted selection of chickens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: To study the neural mechanism by which electroacupuncture (EA) at RN12 (Zhongwan) and BL21 (Weishu) regulates gastric motility.
    METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custom-made rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex (DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin (MTL) and gastrin (GAS) in the paraventricular hypothalamic nucleus (PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor (MTL-R) and gastrin receptor (GAS-R) in both the PVN and the gastric antrum were assayed by western blotting.
    RESULTS: EA at RN12 + BL21 (gastric Shu and Mu points), BL21 (gastric Back-Shu point), RN12 (gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC (2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos (36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL (22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS (24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R (1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R (1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R (1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R (1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure (13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility.
    CONCLUSIONS: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OBJECTIVE: To investigate the effects of intrathecal morphine and fentanyl combined with low-dose naloxone on the expression of motilin and its receptor in a rat model of postoperative pain.
    METHODS: An intrathecal catheter was implanted, and saline, opioids (morphine and fentanyl) and naloxone were intrathecally administered 7 days later. An incisional pain model was established to induce pain behaviors in rats by unilateral plantar incision. Thermal hyperalgesia and mechanical allodynia were measured by using a radiant heat and electronic Von Frey filament, respectively. The expression of motilin in the hippocampus, stomach, duodenum, and plasma was determined by ELISA; and the expression of motilin receptor in the hippocampus was detected by Western blot assay.
    RESULTS: Motilin and its receptor were detected in the hippocampus. Acute incisional pain increased the motilin expression in the hippocampus and duodenum, while decreasing its expression in the gastric body and plasma. Postoperative analgesia with morphine+fentanyl upregulated the expression of motilin in the hippocampus; however, motilin was downregulated in peripheral sites. Naloxone at 1 ng/kg restored motilin to baseline levels. Acute pain, morphine+fentanyl, and naloxone all induced the expression of motilin receptor in the hippocampus.
    CONCLUSIONS: Acute pain, postoperative analgesia with opioids, and naloxone significantly impacted the expression of hippocampal and peripheral motilin. Variation trends in all sites were not identical. Intrathecal injection of low-dose naloxone upregulated paw withdrawal thermal latency and enhanced the analgesic effects of opioids. The findings presented here provide a new basis for central and peripheral regulations in GI motility, clinical postoperative analgesia, and management of analgesic complications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号