lactose metabolism

乳糖代谢
  • 文章类型: Journal Article
    Inner Mongolian cheese is a traditional dairy product in China. It is produced without rennet, using naturally acidified milk that is simmered to achieve whey separation. In order to analyse the impact of simmering on the microbial community structure, high-throughput sequencing was performed to obtain bacterial 16S rRNA sequences from cheeses from the Ordos (ES), Ulanqab (WS), Horqin (KS) and Xilingol (XS) grasslands of Inner Mongolia. The relative abundance of an unexpected microorganism, Thermus thermophilus, ranged from 2% to 9%, which meant that its dominance was second only to that of lactic acid bacteria (LABs). Genome sequencing and fermentation validation were performed in T. thermophilus N-1 isolated from the Ordos, and it was determined that T. thermophilus N-1 could ingest and metabolise lactose in milk to produce lactate during the simmering process. T. thermophilus N-1 could also produce acetate, propionate, citrate and other organic acids through a unique acetate production pathway and a complete propionate production pathway and TCA cycle, which may affect texture and flavour development in Inner Mongolian cheese. Simultaneously, the large amount of citrate produced by T. thermophilus N-1 provides a necessary carbon source for continuous fermentation by LABs after the simmering step. Therefore, T. thermophilus N-1 contributes to cheese fermentation as a predominant, thermophilic, assistant starter microorganism unique to Chinese Inner Mongolian cheese.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Revealing the metabolic profiles of carbohydrates with their regulatory genes and metabolites is conducive to understanding their mechanism of utilization in Streptococcus thermophilus MN-ZLW-002 during pH-controlled batch fermentation. Transcriptomics and metabolomics were used to study carbohydrate metabolism. More than 200 unigenes were involved in carbohydrate transport. Of these unigenes, 55 were involved in the phosphotransferase system (PTS), which had higher expression levels than those involved in ABC protein-dependent systems, permeases, and symporters. The expression levels of the genes involved in the carbohydrate transport systems and phosphate transport system were high at the end-lag and end-exponential growth phases, respectively. In addition, 166 differentially expressed genes (DEGs) associated with carbohydrate metabolism were identified. Most genes had their highest expression levels at the end-lag phase. The pfk, ldh, zwf, and E3.2.1.21 genes involved in the glycolytic pathway had higher expression levels at the end-exponential growth phase than the mid-exponential growth phase. The results showed high expression levels of lacZ and galKTM genes and reabsorption of extracellular galactose. S. thermophilus MN-ZLW-002 can metabolize and utilize galactose. Overall, this comprehensive network of carbohydrate metabolism is useful for further studies of the control of glycolytic pathway during the high-density culture of S. thermophilus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号