custom design

  • 文章类型: Journal Article
    BACKGROUND: Thus far, the hip revision surgery has been widely used and promoted, and the technology has been constantly innovated, such as tissue engineering, 3D printing prosthesis, etc. However, traditional standardized prosthesis, allograft, autograft, bone cement and reinforcing ring are still the main treatment methods in the mainstream pelvic defects classification systems for hip revision. In addition, the mainstream classification systems are still mainly focus on the peri-acetabulum, but less on the large-scale complex pelvic defects that widely affecting the regions far away from the acetabulum, which also have a significant impact on the holistic biomechanical properties of pelvis.
    METHODS: After integrating the design experience of custom prostheses and the understanding of biomechanical properties of pelvis, an innovative pelvic defects classification for custom revision was preliminarily proposed, and was practiced in surgeries. Some typical cases were chosen for elucidation in this study, and two observers each evaluated their CT data independently twice. Intraobserver and interobserver agreement were calculated using the kappa statistic to evaluate the reliability. The pelvis defects were classified into five types and two subtypes. The corresponding reconstruction principles, as the main basis to support the classification, were also described in detail. Prosthesis position examination and Harris hip score were utilized to evaluate the clinical outcome.
    RESULTS: The installed prostheses resulted in high concordance with preoperative position planning, significantly improved Harris score, low postoperative complication rate and no re-revision case. In addition, The interobserver and intraobserver agreement were both excellent.
    CONCLUSIONS: The presenting revision system for complex pelvic defects utilizing 3D-printed custom prosthesis and corresponding classification of pelvic defects can preliminarily guide patients\' grouping and prosthesis design, and may potentially provide an innovative, feasible, and efficient basis for complex total hip arthroplasty (THA) revision.
    UNASSIGNED: This study provides a novel method for prosthetic revision of peri-acetabular pelvic defects, and is expected to systematically improve the efficiency of prosthesis design and surgery in clinical practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The present study aimed to evaluate the biomechanical behavior of a custom 3D-printed polyetheretherketone (PEEK) condylar prosthesis using finite element analysis and mechanical testing. The Mimics software was used to create a 3D model of the mandible, which was then imported into Geomagic Studio software to perform osteotomy of the lesion area. A customized PEEK condyle prosthesis was then designed and the finite element model of the PEEK condyle prosthesis, mandible and fixation screw was established. The maximum stress of the prosthesis and screws, as well as stress and strain of the cortical and cancellous bones in the intercuspal position, incisal clench, left unilateral molar clench and right unilateral molar clench was analyzed. The biomechanical properties of the prosthesis were studied using two models with different lesion ranges. To simulate the actual clinical situation, a special fixture was designed. The compression performance was tested at 1 mm/min for the condyle prosthesis, prepared by fused deposition modeling (FDM). The results of a finite element analysis suggested that the maximum stress of the condyle was 10.733 MPa and the maximum stress of the screw was 9.7075 MPa; both were far less than the yield strength of the material. The maximum force that the two designed prostheses were able to withstand was 3,814.7±442.6 N (Model A) and 4,245.7±348.3 N (Model B). Overall, the customized PEEK condyle prostheses prepared by FDM exhibited a uniform stress distribution and good mechanical properties, providing a theoretical basis for PEEK as a reconstruction material for repairing the temporomandibular joint.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    当必须同时考虑软组织和硬组织时,正畸治疗更为复杂,因为上颌受累尖牙对功能和美学有重要影响。与拔除上颌阻生犬牙相比,暴露后进行正畸牵引可以改善美观,更好地保护患者的牙齿和牙槽骨。因此,为了以最少的意外并发症实现理想的牙齿移动,精确的诊断对于建立有效和高效的部队系统是必不可少的。在这份报告中,我们描述了一例31岁的患者,该患者的唇腭水平受累的上颌左侧犬牙伴有严重的咬合牙槽骨缺损和上颌左侧第一前磨牙缺失。在这里,借助三维成像,使用三方向力装置进行序贯牵引,通过使水平受累的上颌左犬对齐,最终达到可接受的闭塞.上颌左侧犬齿具有正常的牙龈轮廓,并被大量再生的牙槽骨包围。1年的随访稳定性评估表明,美学和功能结果是成功的。
    Orthodontic treatment is more complicated when both soft and hard tissues must be considered because an impacted maxillary canine has important effects on function and esthetics. Compared with extraction of impacted maxillary canines, exposure followed by orthodontic traction can improve esthetics and better protect the patient\'s teeth and alveolar bone. Therefore, in order to achieve desirable tooth movement with minimal unexpected complications, a precise diagnosis is indispensable to establish an effective and efficient force system. In this report, we describe the case of a 31-year-old patient who had a labio-palatal horizontally impacted maxillary left canine with a severe occlusal alveolar bone defect and a missing maxillary left first premolar. Herein, with the aid of three-dimensional imaging, sequential traction was performed with a three-directional force device that finally achieved acceptable occlusion by bringing the horizontally impacted maxillary left canine into alignment. The maxillary left canine had normal gingival contours and was surrounded by a substantial amount of regenerated alveolar bone. The 1-year follow-up stability assessment demonstrated that the esthetic and functional outcomes were successful.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A tumour resection normally involves a large tissue resection and bone replacement. Polyether ether ketone (PEEK) has become a suitable candidate for use in various prostheses owing to its lightness in weight, modulus close to that of natural bone, and good biocompatibility, among other factors. This study proposes a new design method for a rib prosthesis using the centroid trajectory of the natural replaced rib, where the strength can be adjusted by monitoring the cross-sectional area, shape, and properties. A custom-designed rib prosthesis was manufactured using fused deposition modelling (FDM) manufacturing technology, and the mechanical behaviour was found to be close to that of a natural rib. A finite element analysis of the designed rib was carried out under similar loading conditions to those used in mechanical testing. The results indicate that the centroid trajectory derived from a natural rib diaphysis can provide reliable guidance for the design of a rib prosthesis. Such methodology not only offers considerable design freedom in terms of shape and required strength, but also benefits the quality of the surface finishing for samples manufactured using the FDM technique. FDM-printed PEEK rib prostheses have been successfully implanted, and good clinical performances have been achieved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号