chromosome 2

2 号染色体
  • 文章类型: Case Reports
    背景:伴有精神运动发育迟缓和特征性相2(IHPRF2)的婴儿张力低下是一种罕见的常染色体隐性遗传神经发育障碍,由UNC80基因突变引起。它的特点是全球严重的发育迟缓,不良或无言语,行走能力缺失或有限。当前的研究探索了一例由UNC80的新型剪接变体引起的IHPRF2中国患者。病例报告:先证者是一名8岁的中国男性,表现为全球发育迟缓,严重的躯干肌张力减退,缺乏言语和智力残疾。SNP阵列分析揭示了先证者中整个2号染色体[UPD(2)]的单亲等异体性。全外显子组测序(WES)随后在UNC80基因中鉴定出一个新的突变c.5609-4G>A,这是从他母亲那里继承的,并得到了桑格测序的证实,表明UPD(2)是母体来源的。结论:鉴定了与母体UPD(2)相关的新型UNC80纯合剪接变体c.5609-4G>A。这些发现表明UPD构成常染色体隐性遗传疾病的高风险,并提供了UNC80变异谱的信息。我们的发现阐明了对IHPRF2患者中发生的基因型-表型关联的理解。
    Background: Infantile hypotonia with psychomotor retardation and characteristic facies 2 (IHPRF2) is a rare autosomal recessive neurodevelopmental disorder caused by mutations in the UNC80 gene. It is characterized by severe global developmental delay, poor or absent speech and absent or limited walking abilities. The current study explored a case of a Chinese patient with IHPRF2 caused by a novel splicing variant of UNC80. Case Report: The proband is a 8-year-old Chinese male manifested with global developmental delay, severe truncal hypotonia, absent speech and intellectual disability. SNP array analysis revealed a uniparental isodisomy of the entire chromosome 2 [UPD(2)] in the proband. Whole exome sequencing (WES) subsequently identified a novel mutation c.5609-4G>A in the UNC80 gene, which was inherited from his mother and was confirmed by Sanger sequencing, indicating that UPD(2) was of maternal origin. Conclusion: A novel UNC80 homozygous splicing variant c.5609-4G>A associated with maternal UPD(2) was identified. These findings indicate that UPD poses a high risk of autosomal recessive diseases, and provides information on the variant spectrum for UNC80. Our findings elucidate on understanding of the genotype-phenotype associations that occur in IHPRF2 patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    An STR locus with tri-allelic pattern is occasionally observed in routine forensic casework. The extra copy of TPOX locus with tri-allelic pattern in populations has been assumed to be inserted into an X chromosome, which took place forth before the Bantu expansion in Africa. Nonetheless, the exact location of the duplication and the form of rearrangement in the human genome has not been clarified yet.
    In this study, we investigated the extra copy of type 2 tri-allelic pattern at TPOX in various populations. While allele 10 is the major third allele in Africa, allele 11 appears more frequent in America and overwhelming in Chinese and Korean populations, which might attribute to the population substructures. Results from the investigation of family cases showed that the transmission of the extra allele had a similar genetic pattern of autosomal genes. Furthermore, a whole-genome sequencing followed by bioinformatics analysis revealed that the intact form of chromosomal duplication and rearrangement occurred ~ 407 kb away from the authentic TPOX locus on chromosome 2 in two cases. The breakpoints of the insertion were further validated in most other tri-allelic subjects, which can imply the identical origin from the ancestral extra copy. Nevertheless, de novo chromosomal duplication and rearrangement at thyroid peroxidase gene occur in populations.
    Instead of the extra allele 10 in African populations, the main third allele at TPOX with tri-allelic pattern is allele 11 in Chinese and Korean populations. The insertion of the extra copy into chromosome 2 occurs in most subjects with tri-allelic pattern at TPOX and demonstrates the transmission of the third allele from parents to offspring. The breakpoints of the ancestral extra copy are defined, which shows evidence of its inheritance from African populations. In addition, the simple validation method would help improve tri-allelic pattern calling, distinguish de novo chromosomal rearrangements, and also count the frequencies among different geographic regions. Therefore, the statistical interpretation of tri-allelic pattern at TPOX could be enhanced during forensic practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    We present a duo paternity test case to assess the biological relationship between a woman and her female child. After analyzing 57 autosomal and 19 X-chromosomal short tandem repeat loci, mother-daughter exclusions were discovered at four loci, which were all located on chromosome 2. Further testing of whole-genome single nucleotide polymorphisms confirmed that the daughter had complete uniparental disomy (UPD) of chromosome 2. This study presents a cautionary case demonstrating that hasty decisions of parentage exclusion should not be made when genetic markers on the same chromosome do not conform to Mendel\'s laws due to UPD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    OBJECTIVE: We present prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 2.
    METHODS: A 42-year-old woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XY,+mar[10]/46,XY[12]. The parental karyotypes were normal. Array comparative genomic hybridization analysis of the DNA extracted from cultured amniocytes revealed no genomic imbalance. Spectral karyotyping analysis failed to identify the sSMC. Metaphase fluorescence in situ hybridization analysis using the satellite probes CEP1/5/19, CEP2, CEP3, CEP4, CEP6, CEP7, CEP8, CEP9, CEP10, CEP12, CEP13/21, CEP14/22, CEP15, CEP16, and CEP20 revealed a result of 47,XY,+mar .ish der(2)(D2Z+)[10]. The sSMC was derived from the α satellite of chromosome 2. Polymorphic DNA marker analysis using the markers specific for chromosome 2 on the DNAs extracted from cultured amniocytes and parental bloods excluded uniparental disomy 2. At 39 weeks of gestation, a healthy 3394-g male baby was delivered with no phenotypic abnormality. The cord blood had a karyotype of 47,XY,+mar[21]/46,XY[19].
    CONCLUSIONS: Array comparative genomic hybridization and spectral karyotyping may fail to detect an sSMC derived from α satellite, which needs satellite probes for confirmation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Lung cancer is one of the most common malignancies worldwide. The present study aimed to investigate specific genotypes of different subtypes or stages of lung cancer through gene expression variations of chromosome 2 genes, trying to identify predictors for diagnosis or prognosis of lung cancer. About 537 patients with lung adenocarcinoma (ADC), 140 patients with lung squamous carcinoma (SQC), 9 patients with lung large cell carcinoma (LCC), 56 patients with small cell lung cancer (SCLC), and 590 patients without cancer were analyzed in present study. Co-expressed, subtype-specific, and stage-specific chromosome 2 genes were identified and further analyzed by bioinformatic methods. As a result, 15 or 10 genes were significantly up- or down-regulated in all four subtypes of lung cancer. GKN1, LOC100131510, prominin-2 (PROM2), IL37, and SNORA41 were identified as ADC-specific up-regulated genes; SQC-specific up-regulated genes included HOXD family (HOXD1, HOXD3, HOXD4, HOXD8, and HOXD9) and UGT1A family (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A7, UGT1A8, UGT1A9, and UGT1A10); and LCC- or SCLC-specific genes were also identified. Nine genes were significantly up-expressed at all four stages of ADC while 230 genes at all three stages of SQC. MFSD2B, CCL20 and STAT1, or STARD7 and ZNF512 genes may be risk or protect factors in prognosis of ADC, while HTR2B, DPP4, and TGFBRAP1 genes may be risk factors in prognosis of SQC. Our results suggested that a number of altered chromosome 2 genes have the subtype or stage specificities of lung cancer and may be considered as diagnostic and prognostic biomarkers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T-BL), and CD8(+) T cells from lungs (T-LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up- or down-regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down-expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down-expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号