carboxylation

  • 文章类型: Journal Article
    在这项研究中,通过将二氟乙烯插入O-H键中,可以产生二氟乙烯促进的过氧酸O-O键活化。这种与硼酸/酯的O-B配位协同的活化策略极大地极化了O-O键,用于原位生成羧酸类,该羧酸类与硼酸的亲核部分以协同方式反应以产生酯。证明了良好的效率和官能团耐受性。将该方法应用于用作HSL酶抑制剂的硼酸药物的官能化顺利地产生酯衍生物。这种二氟碳烯介导的O-O键活化策略在概念上不同于传统的自由基型方法,并且也是传统酯化方法的补充,具有明显的逆合成断开。
    In this study, a difluorocarbene-promoted O-O bond activation of peroxy acids is developed through the insertion of difluorocarbene into O-H bond. This activation strategy in synergy with O-B coordination with boronic acids/ester greatly polarizes the O-O bond for in-situ generation of carboxylium species that reacts with the nucleophilic part of boronic acids in a concerted way to produce esters. Good efficiency and functional group tolerance are demonstrated. Application of this method to the functionalization of a boronic acid drug used as HSL enzyme inhibitor produces smoothly the ester derivative. This difluorocarbene-mediated O-O bond activation strategy is conceptually different from traditional radical type methods, and is also complementary to conventional esterification methods with a distinct retro-synthetic disconnection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cu-谷胱甘肽(GSH)氧化还原体系,在生物学中必不可少的,在这里设计为超大分子组装体,其中四面体18eCu(I)中心在吸附到ZIF-8上时失去硫醇配体,如EXAFS和DFT计算所示,生成非常稳健的16e平面三角单原子Cu(I)催化剂。催化实验和DFT揭示了Cu(I)和ZIF-8之间的协同作用,通过在温和条件下与末端炔烃或炔丙基胺以优异的产率反应,可以将CO2转化为具有广泛底物的高附加值化学品,并重复使用至少10次而不会显着降低催化效率。
    The Cu-glutathione (GSH) redox system, essential in biology, is designed here as a supramacromolecular assembly in which the tetrahedral 18e Cu(I) center loses a thiol ligand upon adsorption onto ZIF-8, as shown by EXAFS and DFT calculation, to generate a very robust 16e planar trigonal single-atom Cu(I) catalyst. Synergy between Cu(I) and ZIF-8, revealed by catalytic experiments and DFT calculation, affords CO2 conversion into high-value-added chemicals with a wide scope of substrates by reaction with terminal alkynes or propargyl amines in excellent yields under mild conditions and reuse at least 10 times without significant decrease in catalytic efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    苹果酶(ME)催化由丙酮酸和CO2合成L-苹果酸(L-MA),NADH是L-MA脱羧的逆反应。羧基化需要过量的丙酮酸,限制其应用。在这项研究中,通过分析HCO3-和CO2的作用,确定CO2为羧基供体,为提高L-MA收率提供了依据。此外,使用CO2抑制脱羧并引入Km比野生型低2倍的ME突变体A464S,丙酮酸与NADH的浓度比从70:1降低到5:1。最后,羧化与NADH再生偶联,导致基于丙酮酸初始浓度的77%的最大L-MA产率。战略修改,包括最佳反应物比例和有效的突变ME,显著增强了从CO2合成L-MA,为生物转化过程提供了一种有前途的方法。
    The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多有机反应依赖于CO2源产生重要的结构单元和有价值的化学品。在这项研究中,我们比较了大麻二酚(CBD)和大麻二酚酸(CBDA)对超临界CO2(scCO2)诱导的去/羧化反应的影响。结果显示,CBD在邻位被直接羧化以形成CBDA,转化率高达62%。同时,通过不同的组成在大麻植物材料上发生CBDA脱羧。机理研究表明,CBD羧化不仅受scCO2的物理性质影响,而且受植物基质的影响。
    Many organic reactions rely on CO2 sources to generate important structural units and valuable chemicals. In this study, we compared the effects of cannabidiol (CBD) and cannabidiolic acid (CBDA) on the supercritical CO2 (scCO2)-induced de/carboxylation reaction. The results showed that CBD was directly carboxylated in the ortho-position to form CBDA with up to 62% conversion. Meanwhile, CBDA decarboxylation occurred on hemp plant material via varying composition. Mechanistic studies revealed that CBD carboxylation was influenced not only by the physical properties of scCO2, but also by the vegetable matrix.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    引入柔性绝缘聚合物是增强刚性共轭聚合物机械性能的简单策略,使它们能够在灵活的电子设备中使用。然而,由于绝缘聚合物和共轭聚合物之间的混溶性差,同时保持电子特性是具有挑战性的。这项研究介绍了绝缘聚合物的羧化作为一种有效的策略,以通过表面能调制和氢键增强与共轭聚合物的混溶性。羧化弹性体,通过硫醇-烯点击反应合成,与共轭聚合物的表面能紧密匹配。这显著提高了机械性能,实现21.48%的高裂纹起始应变,超过未改性弹性体:共轭聚合物共混物的5.93%。在将羧化弹性体掺入PM6:L8-BO基有机太阳能电池后,实现了19.04%的令人印象深刻的功率转换效率,在结合聚合物的绝缘器件中表现最佳,优于具有未改性弹性体或纯PM6的器件:L8-BO。卓越的效率归因于优化的微观结构和增强的结晶度,以实现高效和平衡的电荷传输,并抑制电荷重组。此外,具有5%羧化弹性体的柔性装置表现出优异的机械稳定性,在1毫米半径的40,000次弯曲循环后,保持88.9%的初始效率,使用5%未改性弹性体的设备超过83.5%。本文受版权保护。保留所有权利。
    Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文建立了无金属的非均相方案,用于在可见光照射下通过烯烃与CO2和烷基胺的碳羧化来合成增值的γ-氨基酸支架。该方案显示了在温和的反应条件下的宽底物范围和用于再循环测试的催化剂的良好稳定性。此外,该方法对几种天然产物的后期衍生化可能是可行的,丰富了化学武器库的实际应用。
    A metal-free heterogeneous protocol is established herein for the synthesis of value-added γ-amino acid scaffolds via carbocarboxylation of alkenes with CO2 and alkylamines under visible light irradiation. The protocol shows broad substrate scope under mild reaction conditions and good stability of the catalyst for recycle tests. Moreover, the methodology could be feasible to the late-stage derivatization of several natural products, enriching the chemical arsenal for practical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用二氧化碳(CO2)的羧化代表了生产羧酸的一种值得注意的方法。与碳-杂原子键相反,用CO2进行羧化的碳-碳键裂解更具挑战性,因为它们固有的且与过渡金属相互作用的轨道方向性较差。在这里,我们报告了在不存在过渡金属的情况下,用CO2对烯烃进行破坏性羧化以产生羧酸的光催化方案。要强调的是,当使用末端烯烃时,我们的方案提供具有明显不变的碳数的羧酸。为了展示这种策略的力量,证明了多种药学相关应用,包括丙酸非甾体抗炎药的模块化合成和生物活性分子衍生物的后期羧化。
    Carboxylation with carbon dioxide (CO2 ) represents one notable methodology to produce carboxylic acids. In contrast to carbon-heteroatom bonds, carbon-carbon bond cleavage for carboxylation with CO2 is far more challenging due to their inherent and less favorable orbital directionality for interacting with transition metals. Here we report a photocatalytic protocol for the deconstructive carboxylation of alkenes with CO2 to generate carboxylic acids in the absence of transition metals. It is emphasized that our protocol provides carboxylic acids with obviously unchanged carbon numbers when terminal alkenes were used. To show the power of this strategy, a variety of pharmaceutically relevant applications including the modular synthesis of propionate nonsteroidal anti-inflammatory drugs and the late-stage carboxylation of bioactive molecule derivatives are demonstrated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    苯甲酸脱羧酶通过逆反应-羧化作用为CO2固定提供了一种优雅的替代品,被命名为bio-Kolbe-Schmitt反应,但它们不利于羧化。增强可逆苯甲酸脱羧酶的羧化效率受到无法解释的羧化机制的限制。可逆酶催化反应的方向取决于酶活性中心的催化残基是否质子化,这是由pH值。因此,在不同的pH值下可以分离正向和反向反应。可逆的2,3-二羟基苯甲酸脱羧酶在pH5.0下进行脱羧,在pH8.6下进行羧化。然而,目前尚不清楚酶在正向和反向反应中与底物和产物的相互作用是否可以在不利的方向上提高可逆酶的催化活性。这里,我们从米曲霉(2,3-DHBD_Ao)中鉴定了一个V形的2,3-二羟基苯甲酸脱羧酶隧道,底物通过该隧道在酶中行进,并证明酪氨酸残基的侧链构象控制可逆反应过程中底物/产物的进出。连同突变体的动力学研究,阐明了在2,3-DHBD_Ao中通过酶隧道行进的底物/产物之间的相互作用是方向依赖性的。这些结果丰富了对底物/产物与大分子可逆酶在不同反应方向上的相互作用的理解。从而证明了具有更高羧化效率的工程脱羧酶的可能途径。关键点:•2,3-DHBD_Ao的残基Trp23充当开关以控制邻苯二酚的进出•确定了用于脱羧和羧化反应的2,3-DHBD_Ao的V形通道•结果为工程脱羧酶提供了有希望的策略,该脱羧酶的底物/产物行进通道内部具有方向依赖性残基。
    Benzoic acid decarboxylases offer an elegant alternative to CO2 fixation by reverse reaction-carboxylation, which is named the bio-Kolbe-Schmitt reaction, but they are unfavorable to carboxylation. Enhancing the carboxylation efficiency of reversible benzoic acid decarboxylases is restricted by the unexplained carboxylation mechanisms. The direction of reversible enzyme catalytic reactions depends on whether catalytic residues at the active center of the enzyme are protonated, which is subjected by the pH. Therefore, the forward and reverse reactions could be separated at different pH values. Reversible 2,3-dihydroxybenzoate acid decarboxylase undergoes decarboxylation at pH 5.0 and carboxylation at pH 8.6. However, it is unknown whether the interaction of enzymes with substrates and products in the forward and reverse reactions can be exploited to improve the catalytic activity of reversible enzymes in the unfavorable direction. Here, we identify a V-shaped tunnel of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) through which the substrate travels in the enzyme, and demonstrate that the side chain conformation of a tyrosine residue controls the entry and exit of substrate/product during reversible reactions. Together with the kinetic studies of the mutants, it is clarified that interactions between substrate/product traveling through the enzyme tunnel in 2,3-DHBD_Ao are direction-dependent. These results enrich the understanding of the interactions of substrates/products with macromolecular reversible enzymes in different reaction directions, thereby demonstrating a possible path for engineering decarboxylases with higher carboxylation efficiency. KEY POINTS: • The residue Trp23 of 2,3-DHBD_Ao served as a switch to control the entry and exit of catechol • A V-shaped tunnel of 2,3-DHBD_Ao for decarboxylation and carboxylation reactions was identified • The results provide a promising strategy for engineering decarboxylases with direction-dependent residues inside the substrate/product traveling tunnel of the enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种平行配对电合成方法,偶联电羧化将CO2掺入酮中,亚胺和烯烃与胺的醇氧化或氧化氰化,这是第一次开发。在分开的电池中分别在阴极和阳极制备各种羧酸以及醛/酮或α-腈胺。它在同时实现高原子经济CO2利用率方面的实用性和优点,提高法拉第效率(总FE高达166%),并证明了广泛的底物范围。通过该方法制备萘普生和布洛芬的药物中间体,证明了其在绿色有机电合成中的潜在应用。
    A parallel paired electrosynthetic method, coupling electrocarboxylation incorporating CO2 into ketone, imine, and alkene with alcohol oxidation or oxidative cyanation of amine, was developed for the first time. Various carboxylic acids as well as aldehyde/ketone or α-nitrile amine were prepared at the cathode and anode respectively in a divided cell. Its utility and merits on simultaneously achieving high atom-economic CO2 utilization, elevated faradaic efficiency (FE, total FE of up to 166 %), and broad substrate scope were demonstrated. The preparation of pharmaceutical intermediates for Naproxen and Ibuprofen via this approach proved its potential application in green organic electrosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电羧化反应,它采用有机电合成来实现CO2作为羧基试剂的利用,为有机羧酸的制备提供了强大而高效的工具。在一些电羧化反应中,CO2还充当促进所需反应的促进剂。这个概念主要突出了最近通过CO2促进的CO2促进的电羧化反应-活性中间体与CO2的中间或暂时保护性羧化。
    Electrocarboxylation reaction, which employs organic electrosynthesis to achieve the utilization of CO2 as a carboxylative reagent, provides a powerful and efficient tool for the preparation of organic carboxylic acid. In some electrocarboxylation reactions, CO2 also acts as a promoter to facilitate the desired reaction. This concept mainly highlights recent CO2 -promoted electrocarboxylation reactions via CO2 ⋅- intermediate or transiently protective carboxylation of active intermediate with CO2 .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号