biocrust

Biocrust
  • 文章类型: Journal Article
    Biological soil crust (biocrust) is widely distributed on the Loess Plateau and plays multiple roles in regulating ecosystem stability and multifunctionality. Few reports are available on the distribution characteristics of biocrust in this region, which limits the assessment of its ecological functions. Based on 388 sampling points in different precipitation zones on the Loess Plateau from 2009 to 2020, we analyzed the coverage, composition, and influencing factors of biocrust across different durations since land abandonment, precipitation levels, topography (slope aspect and position), and utilization of abandoned slopelands (shrubland, forest, and grassland). On this base, with the assistance of machine learning and spatial modeling methods, we generated a distribution map of biocrust and its composition at a resolution of 250 m × 250 m, and analyzed the spatial distribution of biocrust on the Loess Plateau. The results showed that the average biocrust coverage in the woodlands and grasslands was 47.3%, of which cyanobacterial crust accounted for 25.5%, moss crust 19.7%, and lichen crust 2.1%. There were significant temporal and spatial variations. Temporally, the coverage of biocrust in specific regions fluctuated with the extension of the abandoned durations and coverage of cyanobacterial crust, while moss crust showed a reverse pattern. In addition, the coverage of biocrust in the wet season was slightly higher than that in the dry season within a year. Spatially, the coverage of biocrusts on the sandy lands area on the Loess Plateau was higher and dominated by cyanobacterial crusts, while the coverage was lower in the hilly and gully area. Precipitation and utilization of abandoned land were the major factors driving biocrust coverage and composition, while slope direction and position did not show obvious effect. In addition, soil organic carbon content, pH, and texture were related to the distribution of biocrust. This study uncovered the spatial and temporal variability of biocrust distribution, which might provide important data support for the research and management of biocrust in the Loess Plateau region.
    生物土壤结皮(生物结皮)是黄土高原广泛分布的生物地被物,在调节生态系统稳定性和多功能性方面具有重要作用。目前黄土高原生物结皮区域分布特征鲜有报道,限制了该区生物结皮生态功能的评估。本研究基于课题组2009—2020年间5次黄土高原不同降水量带388个样点的生物结皮分布特征调研资料,分析了该区不同退耕年限、降水量、地形(坡向和坡位)和退耕方式(还乔、还灌和还草)下生物结皮的盖度、组成及其影响因素。在此基础上,借助机器学习和空间建模方法,绘制了黄土高原250 m×250 m分辨率生物结皮及组成分布图,分析了黄土高原生物结皮区域空间分布特征。结果表明: 黄土高原地区林草地的生物结皮平均盖度为47.3%,其中,藻结皮占25.5%,藓结皮占19.7%,地衣结皮占2.1%,具有明显的时空变化特征。在时间上,对特定区域,生物结皮盖度随封禁年限的延长呈波动式下降,其中,藻结皮和藓结皮盖度呈明显的反向波动。在年内,生物结皮盖度在湿润季节略高于干旱季节。在空间上,风沙区生物结皮盖度较高,且以藻结皮为主,土石山区生物结皮盖度较低。降水量和退耕方式显著影响生物结皮盖度和组成的空间分布,坡向和坡位的影响相对较小。生物结皮的空间分布与土壤有机碳、pH和质地有关。本研究描述了黄土高原区域生物结皮分布的时空分异特征,可为该区生物结皮研究提供数据支持。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Rainfall is critical to the regulation of slope runoff and soil water recharge. Grazing affects land cover and soil structure, with consequence on slope runoff generation and soil water recharge. Little attention has been paid to the effects of rainfall on soil water recharge caused by grazing. In this study, we examined land covers and soil water contents under different grazing intensities (G1-G5: 2.2, 3.0, 4.2, 6.7, 16.7 sheep·hm-2) and no grazing sites (NG), aiming to analyze soil water recharge under natural rainfall conditions after grazing. The results showed that grazing exerted significant effects on vegetation and biocrust coverage. The vegetation coverage was decreased by 8.3%-16.4% under G1-G5 grazing, while the biocrust coverage was increased by 106.9% under G2 grazing compared to NG. The soil surface roughness under G1-G5 grazing was increased by 53.1%-152.5%, and the thickness of biocrust was decreased by 24.1% under G5. Soil wetting front velocity decreased with increasing rainfall intensity, and that of 0-5 cm layer under the G2 grazing intensity decreased by 60.0% to 83.3% under rainfall between 18.0 mm and 70.3 mm compared to NG. The effect of grazing on soil wetting front velocity was significantly related to biocrust coverage and soil bulk density of 0-5 cm soil layer. Generally, grazing did not affect soil water recharge rates of the slope grassland on the Loess Plateau. G2 grazing may prolong the migration time of soil water in the surface layer by increasing the coverage of cyanobacteria biocrusts, which may be beneficial to the restoration of soil microenvironment. Our results provided scientific basis for water management in the enclosure grassland of the Loess Plateau in the \"post-conversion era\".
    降雨是影响土壤水分补给和坡面产流的关键因素,放牧可改变地表覆被特征和表层土壤结构,进而影响坡面产流和土壤水分补给。目前鲜有研究关注放牧对土壤水分补给的影响。本研究通过围栏放牧试验,定位监测自然降雨条件下土壤水分动态,对比了不同放牧强度(G1~G5:2.2、3.0、4.2、6.7、16.7羊·hm-2)下地表覆被、土壤理化属性和降雨土壤水分补给特征。结果表明: 放牧显著影响植被和生物结皮盖度,与不放牧样地(NG)相比,G1~G5放牧强度下植被盖度降低8.3%~16.4%,G2放牧强度下生物结皮盖度较NG增加106.9%。G1~G5放牧强度下地表粗糙度增加53.1%~152.5%,G5放牧强度下生物结皮厚度降低24.1%。土壤湿润锋速随降雨强度增加而降低,G2放牧强度下0~5 cm土层湿润锋速在不同降雨条件下(降雨量18.0~70.3 mm)与NG相比降低60.0%~83.3%。放牧对土壤湿润锋速的影响与生物结皮盖度和0~5 cm土壤容重显著相关。放牧未显著影响黄土高原降雨条件下土壤水分补给速率。综上,G2放牧可通过增加藻结皮盖度,延长土壤水分在表层土壤的运移时间,有益于干扰后表层土壤微生态环境恢复。本研究结果可为“后退耕时代”黄土高原退耕草地水分管理提供科学依据。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物土壤结皮(生物结皮)分布在全球干旱和半干旱地区。微生物是生物锈蚀的重要组成部分。它们增加和加速关键的生化过程。然而,对地衣和苔藓生物中微生物的功能基因和代谢过程知之甚少。这项研究使用shot弹枪宏基因组测序来比较以地衣为主和苔藓为主的生物的微生物群落,并揭示了碳和氮循环中涉及的微生物基因和代谢途径。结果表明,放线菌,拟杆菌,苔藓生物中的酸性细菌比苔藓生物更丰富,而变形细菌和蓝细菌在地衣生物中的含量比苔藓生物丰富。两种生物类型的微生物组之间,碳水化合物活性酶和与碳和氮代谢相关的酶的相对丰度存在显着差异。然而,在两种生物类型的微生物群落中,呼吸途径在碳固定途径上占主导地位。编码一氧化碳脱氢酶的基因比编码参与碳固定的核酮糖1,5-二磷酸羧化酶/加氧酶(RuBisCo)的基因更丰富。同样,代谢N途径的多样性主要是氮还原,然后是反硝化,固氮比例最低。两种生物类型的微生物组之间涉及氮循环的基因多样性不同。同化硝酸盐还原基因在地衣生物中具有较高的相对丰度,而异化硝酸盐还原基因在苔藓生物中具有较高的相对丰度。由于溶解的有机碳和土壤有机碳被认为是生物微生物群落结构的主要驱动因素,这些结果表明,生物型在微生物多样性和相关的生物地球化学循环中起着举足轻重的作用。
    Biological soil crusts (biocrusts) are distributed in arid and semiarid regions across the globe. Microorganisms are an essential component in biocrusts. They add and accelerate critical biochemical processes. However, little is known about the functional genes and metabolic processes of microbiomes in lichen and moss biocrust. This study used shotgun metagenomic sequencing to compare the microbiomes of lichen-dominated and moss-dominated biocrust and reveal the microbial genes and metabolic pathways involved in carbon and nitrogen cycling. The results showed that Actinobacteria, Bacteroidetes, and Acidobacteria were more abundant in moss biocrust than lichen biocrust, while Proteobacteria and Cyanobacteria were more abundant in lichen biocrust than moss biocrust. The relative abundance of carbohydrate-active enzymes and enzymes associated with carbon and nitrogen metabolism differed significantly between microbiomes of the two biocrust types. However, in the microbial communities of both biocrust types, respiration pathways dominated over carbon fixation pathways. The genes encoding carbon monoxide dehydrogenase were more abundant than those encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) involved in carbon fixation. Similarly, metabolic N-pathway diversity was dominated by nitrogen reduction, followed by denitrification, with nitrogen fixation the lowest proportion. Gene diversity involved in N cycling differed between the microbiomes of the two biocrust types. Assimilatory nitrate reduction genes had higher relative abundance in lichen biocrust, whereas dissimilatory nitrate reduction genes had higher relative abundance in moss biocrust. As dissolved organic carbon and soil organic carbon are considered the main drivers of the community structure in the microbiome of biocrust, these results indicate that biocrust type has a pivotal role in microbial diversity and related biogeochemical cycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的几十年中,对生物土壤结皮(生物结皮)的研究激增。双性恋文学已经扩大,随着更多的研究评估和描述各种生物群落在广泛的生物群落和栖息地以及广泛的学科中的功能,以及将生物锈蚀纳入全球视角和生物地球化学模型。随着生物研究人员数量的增加,连同被定义为“生物危机”的土壤群落的范围,值得一问,我们是否都有一个明确的观点,普遍,并充分阐明了什么构成双性恋的定义。在这次审查中,我们综合了新的和有经验的生物研究人员的观点,提供一个完善和充分阐述的定义的生物锈病。在这样做的时候,我们说明了它们提供的生态相关性和生态系统服务。我们证明了生物锈蚀由四个不同的元素定义:物理结构,功能特征,栖息地,和分类组成。我们描述了外群,其中有一些,但不是全部,必须具有与我们的定义完全一致的特征,因此不会被认为是生物锈病。我们还总结了各种不同类型的社区,这些社区属于我们对生物质能的定义,在强调其全球分布的过程中。最后,我们建议普遍使用Belnap,Büdel&Lange定义,生物土壤结皮(生物结皮)是由土壤颗粒和不同比例的光合自养(例如蓝细菌,藻类,地衣,苔藓植物)和异养(例如细菌,真菌,古细菌)生物,生活在里面,或者立即在上面,土壤的最高毫米。土壤颗粒通过这些经常极端耐受的生物群的存在和活动而聚集,这些生物群会定期干燥,合成的活地壳覆盖地面作为一个连贯层。有了生物锈病的详细定义,说明了它们的生态功能和广泛分布,我们希望激发人们对生物研究的兴趣,并告知各种利益相关者(例如土地管理者,土地使用者)对生态系统和地球系统功能的总体重要性。
    Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as \'biocrust\', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于缺乏沙漠生物土壤的可用数据,气候变暖将如何影响干燥环境中的温室气体(GHG)预算存在很多不确定性。我们对蓝藻为主的CO2,CH4和N2O流出物进行了2.5年的现场测量,苔藓为主和混合(蓝细菌,苔藓和地衣)使用开放式室来模拟气候变暖(平均1.2°C)。沙漠生物土壤通常是大气CH4和N2O的弱汇。尽管变暖对每日CO2,CH4和N2O流出的影响因采样日期和生物土壤而异,每天没有显着差异,在大多数情况下,三种生物土壤的每月和季节性平均CO2,CH4和N2O在变暖和控制之间的流量。然而,由于间接变暖和OTC直接掩蔽降水引起的干旱效应,变暖导致苔藓为主的生物土壤中的年累积CO2排放略有减少(p=0.06)(14.2%)。虽然蓝藻为主和混合生物土壤的增温和控制之间没有显着差异,暗示温室气体对气候变暖的中性响应。这些结果表明,如果排除干旱对CO2排放的直接负面影响,干旱沙漠生物土壤的温室气体预算在温暖的未来不会显着变化。因此,响应于苔藓为主的生物土壤的变暖和干旱,累积的CO2排放量的边际减少可能会对变暖和干燥的气候变化模式提供微弱的负反馈。
    There is much uncertainty about how climate warming will impact greenhouse gases (GHG) budget in dry environments due to the lack of available data for desert biocrust soil. We implemented a 2.5-year field measurement of CO2, CH4 and N2O effluxes in cyanobacteria-dominated, moss-dominated and mixed (cyanobacteria, moss and lichen) biocrust soils using open-top-chambers to simulate climate warming (1.2 °C on average). Desert biocrust soils generally acted as a weak sink of atmospheric CH4 and N2O. Although warming effects on daily CO2, CH4, and N2O effluxes varied depending on sampling date and biocrust soil, there was no significant difference in daily, monthly and seasonal average CO2, CH4 and N2O effluxes between warming and control in most cases for three biocrust soils. However, warming caused a marginal (p = 0.06) decrease (14.2%) in annual accumulative CO2 efflux in moss-dominated biocrust soil due to the drought effects caused by warming indirectly and OTC sheltering of precipitation directly, while there was no significant difference between warming and control for cyanobacteria-dominated and mixed biocrust soils, implying a neutral response of GHG effluxes to climate warming. These results suggest that the GHG budget in arid desert biocrust soil would not be significantly changed in the warmer future when the direct negative effects of drought on CO2 effluxes were excluded. Therefore, a marginal decrease of accumulative CO2 effluxes in response to warming coupled with drought for moss-dominated biocrust soil might offer a weak negative feedback to warming and drier climate change pattern.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Desert ecosystems are generally considered lifeless habitats characterised by extreme environmental conditions, yet they are successfully colonised by various biocrust nonvascular communities. A biocrust is not only an important ecosystem engineer and a bioindicator of desert ecological restoration but also plays a vital role in linking surficial abiotic and biotic factors. Thus, extensive research has been conducted on biocrusts in critical dryland zones. However, few studies have been conducted in the vast temperate deserts of China prior to the beginning of this century. We reviewed the research on biocrusts conducted in China since 2000, which firstly focused on the eco-physiological responses of biocrusts to species composition, abiotic stresses, and anthropological disturbances. Further, research on the spatial distributions of biocrusts as well as their succession at different spatial scales, and relationships with vascular plants and soil biomes (especially underlying mechanisms of seed retention, germination, establishment and survival of vascular plants during biocrust succession, and creation of suitable niches and food webs for soil animals and microorganisms) was analysed. Additionally, studies emphasising on the contribution of biocrusts to ecological and hydrological processes in deserts as well as their applications in the cultivation and inoculation of nonvascular plants for land degradation control and ecological restoration were assessed. Finally, recent research on biocrusts was evaluated to propose future emerging research themes and new frontiers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 μg/mL and 83.41 μg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9T using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9T on the basis of DNA-DNA hybridization and polar lipid analysis compared with YL28-9T. On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Based on the measurements of the fluxes of CO2, CH4 and N2O from the soil covered by two types of biocrusts dominated separately by moss and algae-lichen, followed by 0 (control), 1 (shallow) and 10 (deep) mm depths of sand burial treatments, we studied the effects of sand burial on greenhouse gases fluxes and their relationships with soil temperature and moisture at Shapotou, southeastern edge of the Tengger Desert. The results showed that sand burial had significantly positive effects on CO2 emission fluxes and CH4 uptake fluxes of the soil covered by the two types of biocrusts, but imposed differential effects on N2O fluxes depending on the type of biocrust and the depth of burial. Deep burial (10 mm) dramatically increased the N2O uptake fluxes of the soil co-vered by the two types of biocrusts, while shallow burial (1 mm) decreased the N2O uptake flux of the soil co-vered by moss crust only and had no significant effects on N2O uptake flux of the soil covered by algae-lichen crust. In addition, CO2 fluxes of the two biocrusts were closely related to the soil temperature and soil moisture, thereby increasing with the raised soil surface temperature and soil moisture caused by sand burial. However, the relationships of burial-induced changes of soil temperature and moisture with the changes in the other two greenhouse gases fluxes were not evident, indicating that the variations of soil temperature and moisture caused by sand burial were not the key factors affecting the fluxes of CH4 and N2O of the soil covered by the two types of biocrusts.
    以腾格里沙漠东南缘自然植被区生长的两种典型生物结皮——藓类和藻类-地衣混生结皮覆盖土壤为对象,通过设置0(对照)、1 mm(浅层)和10 mm(深层)沙埋处理,研究了沙埋对该区结皮覆盖土壤温室气体通量的影响,并通过测定沙埋后土壤温度、水分的变化,初步探讨了沙埋影响生物结皮覆盖土壤温室气体通量的环境机制.结果表明: 沙埋显著增加了两类结皮覆盖土壤的CO2释放通量和CH4吸收通量(P<0.05);但对N2O通量的影响因沙埋厚度和结皮类型的不同而异:深层沙埋(10 mm)显著增加了两类结皮覆盖土壤的N2O吸收通量,浅层沙埋(1 mm)仅显著降低了藓类结皮覆盖土壤的N2O吸收通量,而对混生结皮覆盖土壤的N2O通量影响不显著.沙埋显著增加了两类结皮覆盖土壤的表层温度和0~5 cm深土壤湿度,从而增加了其CO2释放通量.但是沙埋引起的土壤温湿度的变化与CH4和N2O通量变化的相关性不显著,说明沙埋引起的土壤温湿度变化不是影响其CH4和N2O通量的关键因子.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号