auditory sensory gating

  • 文章类型: Journal Article
    Background: While a cochlear implant (CI) can restore access to audibility in deaf children, implanted children may still have difficulty in concentrating. Previous studies have revealed a close relationship between sensory gating and attention. However, whether CI children have deficient auditory sensory gating remains unclear. Methods: To address this issue, we measured the event-related potentials (ERPs), including P50, N100, and P200, evoked by paired tone bursts (S1 and S2) in CI children and normal-hearing (NH) controls. Suppressed amplitudes for S2 compared with S1 in these three ERPs reflected sensory gating during early and later phases, respectively. A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was performed to assess the attentional performance. Results: Significant amplitude differences between S1 and S2 in N100 and P200 were observed in both NH and CI children, indicating the presence of sensory gating in the two groups. However, the P50 suppression was only found in NH children and not in CI children. Furthermore, the duration of deafness was significantly positively correlated with the score of inattention in CI children. Conclusion: Auditory sensory gating can develop but is deficient during the early phase in CI children. Long-term auditory deprivation has a negative effect on sensory gating and attentional performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Auditory sensory gating deficits have been reported in subjects with bipolar disorder, but the hemispheric and neuronal origins of this deficit are not well understood. Moreover, gating of the auditory evoked components reflecting early attentive stage of information processing has not been investigated in bipolar disorder. The objectives of this study were to investigate the right and left hemispheric auditory sensory gating of the M50 (preattentive processing) and M100 (early attentive processing) in patients diagnosed with bipolar I disorder by utilizing magnetoencephalography (MEG).
    METHODS: Whole-head MEG data were acquired during the standard paired-click paradigm in 20 bipolar I disorder patients and 20 healthy controls. The M50 and the M100 responses were investigated, and dipole source localizations were also investigated. Sensory gating were determined by measuring the strength of the M50 and the M100 response to the second click divided by that of the first click (S2/S1).
    RESULTS: In every subject, M50 and M100 dipolar sources localized to the left and right posterior portion of superior temporal gyrus (STG). Bipolar I disorder patients showed bilateral gating deficits in M50 and M100. The bilateral M50 S2 source strengths were significantly higher in the bipolar I disorder group compared to the control group.
    CONCLUSIONS: The sample size was relatively small. More studies with larger sample sizes are warranted. Bipolar subjects were taking a wide range of medications that could not be readily controlled for.
    CONCLUSIONS: These findings suggest that bipolar I disorder patients have auditory gating deficits at both pre-attentive and early attentive levels, which might be related to STG structural abnormality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号