Visuomotor

视觉运动
  • 文章类型: Journal Article
    以前的研究表明,左半球主导着运动功能,通常通过同位激活测量观察到。使用功能连接方法,这项研究调查了手写和绘画过程中感觉运动皮层的偏侧化,两个复杂的视觉运动任务,具有不同的上下文需求。我们发现初级运动皮层(M1)的左侧和右侧连接,背侧运动前皮层(PMd),体感皮层,视觉区域在成年人(男性和女性)中很明显,主要是半球间的整合方式。严重的,这些偏侧化趋势在不同的任务环境中保持高度不变,表示任务不变的神经架构,用于编码在不同任务上下文中一致实现的基本运动程序。此外,PMd在任务上下文之间表现出轻微的偏侧化程度变化,反映了高阶电机系统适应不同任务需求的能力。然而,在10岁儿童(男性和女性)中没有检测到感觉运动皮层的基于连通性的侧向化,这表明基于连通性的侧向化的成熟需要长期发展。总之,这项研究证明了感觉运动皮层中任务不变和任务敏感连通性的偏侧化,支持熟练的视觉运动性能的弹性和适应性。这些发现与运动系统的分层组织相一致,并强调了基于功能连通性的方法在研究功能侧向化方面的重要性。重要性陈述先前的研究已经证明了运动皮层的左侧激活,适应任务需求。尽管如此,运动皮层的功能连通性偏侧化及其在任务上下文中的任务依赖性变化在很大程度上仍然未知。通过采用基于连接性的方法,这项研究揭示了在成人复杂的视觉运动过程中感觉运动皮层的左侧和右侧连接。重要的是,这些横向模式在整个任务上下文中表现出坚定不移的稳定性,在背侧运动前皮层中观察到细微程度的侧向变化。同时,中年儿童缺乏类似的连通性偏侧化,这表明连接侧化的长期发展。这些结果阐明了运动皮层的连通性偏侧化特征,为运动技能的弹性和适应性的神经基础提供新的见解。
    Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    沉浸在艺术活动中通常出现的心理流动有利于保持心理健康。然而,关于流动如何在艺术中出现并引起愉悦的神经生物学证据并不多。使用具有自我评估的主观流动经验的中国书法笔迹的模仿任务,我们研究了支持流动的神经相互作用。我们的结果表明,书法笔迹需要在沿背流的视觉和感觉运动区域之间广泛的多模态区域之间进行合作,自上而下的注意力控制系统,和生理情感网络。我们证明,较高的流量以有效工作的大脑为特征,表现为较少的激活,尤其是在背侧注意力网络内的大脑区域以及书法中视觉和感觉运动网络之间的功能连通性。此外,我们还提出,在书法写作过程中的乐趣来自于流动出现时的有效皮层活动,以及负责感情的Orbito-caudate电路。这些发现为通过艺术流动的神经心理学表征提供了新的见解,并强调艺术活动对促进福祉和繁荣的潜在好处。
    The mental flow that commonly emerges during immersion in artistic activities is beneficial for maintaining mental health. However, there is not that much converging neurobiological evidence about how flow emerges and elicits pleasure in arts. Using an imitation task of Chinese calligraphic handwriting with self-rated subjective flow experience, we investigated the neural interactions supporting flow. Our results show that calligraphic handwriting requires cooperation between widespread multimodal regions that span the visual and sensorimotor areas along the dorsal stream, the top-down attentional control system, and the orbito-affective network. We demonstrate that higher flow is characterized by an efficiently working brain that manifests as less activation particularly in the brain regions within dorsal attention network and functional connectivity between visual and sensorimotor networks in calligraphy. Furthermore, we also propose that pleasure during calligraphy writing arises from efficient cortical activity in the emergence of flow, and the orbito-caudate circuit responsible for feelings of affection. These findings provide new insight into the neuropsychological representations of flow through art, and highlight the potential benefits of artistic activities to boost well-being and prosperity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然伸手和抓住是非常普遍的手动行动,神经影像学研究提供了证据,证明他们的神经表现可能在不同的身体部位之间共享,即,效应器。如果这些动作是由与效应器无关的机制引导的,类似的运动学应该观察到当行动是由手或由一个皮质远程和较少经验的效应器执行,比如脚。我们用两个特征性的动作成分检验了这一假设:到达的初始弹道阶段,以及在抓取过程中根据对象大小对数字进行预整形。我们通过要求参与者用手和脚伸手并抓住不同宽度的物体来检查这些运动学特征是否反映了与效应器无关的机制。首先,在伸手和抓住的过程中,达到在手和脚之间匹配的峰值速度的速度曲线,表示共享弹道加速阶段。第二,两个效应器的最大握力孔径和最大握力孔径随着物体尺寸的增加而增加,指示传输过程中对象大小的编码。在减速阶段和最大握力孔径的时间发现了手和脚之间的差异,可能是由于生物力学差异和参与者对足部动作缺乏经验。这些发现为跨身体部位的伸手和抓握的独立于效应器的视觉运动机制提供了证据。
    While reaching and grasping are highly prevalent manual actions, neuroimaging studies provide evidence that their neural representations may be shared between different body parts, i.e., effectors. If these actions are guided by effector-independent mechanisms, similar kinematics should be observed when the action is performed by the hand or by a cortically remote and less experienced effector, such as the foot. We tested this hypothesis with two characteristic components of action: the initial ballistic stage of reaching, and the preshaping of the digits during grasping based on object size. We examined if these kinematic features reflect effector-independent mechanisms by asking participants to reach toward and to grasp objects of different widths with their hand and foot. First, during both reaching and grasping, the velocity profile up to peak velocity matched between the hand and the foot, indicating a shared ballistic acceleration phase. Second, maximum grip aperture and time of maximum grip aperture of grasping increased with object size for both effectors, indicating encoding of object size during transport. Differences between the hand and foot were found in the deceleration phase and time of maximum grip aperture, likely due to biomechanical differences and the participants\' inexperience with foot actions. These findings provide evidence for effector-independent visuomotor mechanisms of reaching and grasping that generalize across body parts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号