Qa-SNARE Proteins

Qa - SNARE 蛋白
  • 文章类型: Journal Article
    Syntaxin5(Syx5)属于SNAREs家族,在囊泡与靶膜的融合中起重要作用。我们对Syx5功能的了解大部分来自真菌或脊椎动物细胞的研究,Syx5在昆虫发育过程中的运作方式知之甚少。在这项研究中,我们研究了LmSyx5在半代谢昆虫蝗虫肠道发育中的作用。LmSyx5在许多组织中表达,肠道中的含量较高。通过RNA干扰(RNAi)敲除LmSyx5极大地抑制了若虫和成虫的摄食。注射dsLmSyx5的蝗虫体重减轻,最终以100%的死亡率死亡。此外,苏木精-伊红染色表明dsLmSyx5处理的若虫中肠变形,中肠上皮细胞刷状边界严重受损,表明LmSyx5参与中肠的形态发生。TEM进一步显示中肠细胞的内质网具有臃肿的外观。一起来看,这些结果表明,LmSyx5对影响迁徙乳杆菌生长和发育的中肠上皮稳态至关重要。因此,Syx5是一个有前途的RNAi靶标,用于控制迁徙乳杆菌,甚至其他害虫。
    Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质泛素化是真核生物中最重要的翻译后修饰(PTM)之一,并参与几乎所有细胞信号通路的调节。细胞内细菌病原体嗜肺军团菌通过不同的机制易位至少26个效应子劫持宿主泛素化信号。在这些效应物中,SidC/SdcA是采用Cys-His-Asp催化三联体的新型E3泛素连接酶。SidC/SdcA对于将内质网(ER)衍生的囊泡募集到含军团菌的液泡(LCV)至关重要。然而,SidC/SdcA的泛素化靶标在很大程度上是未知的,这限制了我们对这些效应子劫持囊泡运输途径的机制的理解。这里,我们证明了多种Rab小GTP酶和目标可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)蛋白是SidC/SdcA的真正泛素化底物。SidC/SdcA介导的突触素3和突触素4的泛素化促进了它们与囊泡-SNARE蛋白Sec22b的非常规配对,从而有助于ER衍生的囊泡与吞噬体的膜融合。此外,我们的数据表明,SidC/SdcA对Rab7的泛素化对于其与LCV膜的关联至关重要。Rab7泛素化可能损害其与下游效应Rab相互作用溶酶体蛋白(RILP)的结合,这部分解释了为什么尽管获得了Rab7,但LCV仍避免与溶酶体融合。一起来看,我们的研究揭示了SidC/SdcA促进LCV成熟的生物学机制。
    Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为原发性肝脏恶性肿瘤,肝细胞癌(HCC)通常由慢性肝病和肝硬化引起。生物信息学分析显示长链非编码RNAKDM4A反义RNA1(KDM4A-AS1)可能在HCC中异常表达,其异常表达可能影响患者预后。我们进行了这项研究来说明KDM4A-AS1在调节HCC恶性细胞行为中的功能和机制。通过逆转录-定量聚合酶链反应(RT-qPCR)检测KD-M4A-AS1、microRNA(miR)-4306和信使RNA融合蛋白6(STX6)的表达。肝癌细胞增殖,凋亡,迁移,和入侵是通过菌落形成试验来测量的,流式细胞术,伤口愈合和Transwell分析。通过RNA免疫沉淀和荧光素酶报告基因测定验证了基因之间的相互作用。进行Western印迹以定量STX6或凋亡标志物的蛋白质表达。KDM4A-AS1在HCC细胞和组织中高表达。KDM4A-AS1敲低导致肝癌细胞凋亡增强,抑制肝癌细胞增殖,迁移,和入侵。MiR-4306结合并负调控STX6。KDM4A-AS1直接结合miR-4306并因此上调STX6。STX6过表达逆转了KDM4A-AS1耗竭对HCC恶性行为的抑制作用。KDM4A-AS1促进肝癌细胞迁移,入侵,和通过miR-4306上调STX6的生长。
    As a primary liver malignancy, hepatocellular carcinoma (HCC) is commonly induced by chronic liver disease and cirrhosis. Bioinformatics analysis reveals that long noncoding RNA KDM4A antisense RNA 1 (KDM4A-AS1) may be aberrantly expressed in HCC and its abnormal expression might influence prognosis in patients. We conducted this study to illustrate the functions and mechanism of KDM4A-AS1 in regulating HCC malignant cell behavior. KD-M4A-AS1, microRNA (miR)-4306 and messenger RNA syntaxin 6 (STX6) expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). HCC cell proliferation, apoptosis, migration, and invasion were measured by colony forming assays, flow cytometry, wound healing and Transwell assays. The interaction between genes was verified by RNA immunoprecipitation and luciferase reporter assays. Western blotting was performed to quantify protein expression of STX6 or apoptotic markers. KDM4A-AS1 was highly expressed in HCC cells and tissues. KDM4A-AS1 knockdown led to enhanced HCC cell apoptosis and suppressed HCC cell proliferation, migration, and invasion. MiR-4306 bound to and negatively regulated STX6. KDM4A-AS1 directly bound to miR-4306 and thus up-regulated STX6. STX6 overexpression reversed the inhibitory influence of KDM4A-AS1 depletion on HCC malignant behavior. KDM4A-AS1 promotes HCC cell migration, invasion, and growth by upregulating STX6 via miR-4306.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鲍曼不动杆菌(A.鲍曼不动杆菌)通过降解STX17引起自噬通量紊乱,导致严重的炎症反应。尚不清楚STX17是否可以通过控制自身溶酶体功能来改变炎症反应过程。本研究旨在探讨STX17在鲍曼不动杆菌诱导的焦亡中的作用。我们的发现表明STX17的过表达增强了自噬小体的降解,增加LAMP1表达,减少组织蛋白酶B的释放,并改善溶酶体功能。相反,STX17的敲低抑制自噬体降解,减少LAMP1表达,增加组织蛋白酶B的释放,加速溶酶体功能障碍.在鲍曼不动杆菌感染的情况下,发现STX17的过表达可以改善溶酶体功能并降低GSDMD和IL-1β的成熟表达,随着LDH的释放,从而抑制鲍曼不动杆菌引起的焦亡。相反,STX17基因敲除导致溶酶体功能异常增加,并进一步增强成熟GSDMD和IL-1β的表达,并增加了LDH的释放,加重鲍曼不动杆菌诱导的焦亡。这些发现表明STX17通过调节溶酶体功能来调节鲍曼不动杆菌诱导的焦亡。
    Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    无创性经颅直流电刺激(tDCS)是一种安全的缺血性中风治疗方法。阴极双侧tDCS(BtDCS)是我们最近建立的一种改进的tDCS方法。由于硒(Se)在脑缺血损伤中起着至关重要的作用,我们研究了在大鼠脑缺血再灌注(I/R)损伤中,阴极BtDCS是否通过调节硒依赖性信号传导而赋予神经保护作用。我们首先表明,在I/R后,大鼠皮质半影中硒及其转运蛋白硒蛋白P(SEPP1)的水平降低,而阴极BtDCS阻止了Se和SEPP1的还原。有趣的是,直流电刺激(DCS)增加了受氧糖剥夺复氧(OGD/R)培养的星形胶质细胞中的SEPP1水平,但对OGD/R损伤的神经元中的SEPP1水平没有影响,表明DCS可能通过增强星形胶质细胞中SEPP1的合成和分泌来增加缺血神经元中的Se。然后,我们发现DCS减少了与星形胶质细胞共培养的OGD/R损伤的神经元中受损的线粒体数量。DCS和BtDCS阻止了线粒体质量控制信号的减少,囊泡相关膜蛋白2(VAMP2)和syntaxin-4(STX4),分别与星形胶质细胞和缺血性脑共培养的OGD/R损伤神经元。在相同的实验条件下,SEPP1的下调阻断了DCS-和BtDCS诱导的VAMP2和STX4的上调。最后,我们证明了阴极BtDCS增加硒以减少I/R后的内在体积。一起,本研究揭示了大鼠脑I/R损伤后,阴极BtDCS通过增加星形胶质细胞中的SEPP1和随后的缺血神经元中SEPP1/VAMP2/STX4信号上调而赋予神经保护的分子机制.关键点:双侧经颅直流电刺激(BtDCS)可防止缺血性半影中硒(Se)和硒蛋白P的减少。硒在脑缺血损伤中起着至关重要的作用。与星形胶质细胞共培养后,直流电刺激可减少线粒体损伤,并阻断氧糖剥夺复氧损伤神经元中囊泡相关膜蛋白2(VAMP2)和syntaxin-4(STX4)的减少。CathodalBtDCS调节Se/VAMP2/STX4信号传导以在缺血后赋予神经保护。
    Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬对于细胞成分的降解和再循环至关重要。自噬体和溶酶体之间的融合至关重要,引导自噬货物降解。该过程由哺乳动物细胞中的STX17-SNAP29-VAMP8和STX7-SNAP29-YKT6驱动。然而,STX17和YKT6之间的相互作用及其意义仍有待揭示。在这项研究中,我们对STX17和YKT6在自噬体-溶酶体融合中独立发挥作用的观点提出了挑战。YKT6,通过它的陷阱域,在自噬体上与STX17和SNAP29形成复合物,增强自噬通量。VAMP8从这个复合体中取代了YKT6,导致融合复合物STX17-SNAP29-VAMP8的形成。我们证明了YKT6-SNAP29-STX17复合物促进了由STX17-SNAP29-VAMP8驱动的脂质和内容物混合,表明YKT6在有效膜融合中的启动作用。我们的研究结果提供了自噬体-溶酶体融合的潜在调控机制。强调YKT6及其与STX17和SNAP29的相互作用在促进自噬通量中的重要性。
    Autophagy is crucial for degrading and recycling cellular components. Fusion between autophagosomes and lysosomes is pivotal, directing autophagic cargo to degradation. This process is driven by STX17-SNAP29-VAMP8 and STX7-SNAP29-YKT6 in mammalian cells. However, the interaction between STX17 and YKT6 and its significance remain to be revealed. In this study, we challenge the notion that STX17 and YKT6 function independently in autophagosome-lysosome fusion. YKT6, through its SNARE domain, forms a complex with STX17 and SNAP29 on autophagosomes, enhancing autophagy flux. VAMP8 displaces YKT6 from this complex, leading to the formation of the fusogenic complex STX17-SNAP29-VAMP8. We demonstrated that the YKT6-SNAP29-STX17 complex facilitates both lipid and content mixing driven by STX17-SNAP29-VAMP8, suggesting a priming role of YKT6 for efficient membrane fusion. Our results provide a potential regulation mechanism of autophagosome-lysosome fusion, highlighting the importance of YKT6 and its interactions with STX17 and SNAP29 in promoting autophagy flux.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在植物中,所谓的质膜内在蛋白(PIP)是控制植物水分状态的主要水通道。膜运输有助于主要PIP的功能调节,对于非生物胁迫恢复能力至关重要。拟南芥PIP2;1响应于高盐度而从质膜迅速内化,以调节渗透水运输,但是对潜在机制的了解是零碎的。在这里,我们显示PIP2;1与植物的合成蛋白132(SYP132)以及质膜H-ATPaseAHA1复合,如通过体内和体外分析所证明的。SYP132是一种多方面的囊泡运输蛋白,已知与AHA1相互作用并促进内吞作用以影响生长和病原体防御。在免疫印迹分析中追踪天然蛋白质,我们发现盐度胁迫增强SYP132与PIP2的相互作用;1和PIP2;2同工型促进水通道远离质膜的再分配。同时,在盐度胁迫下,SYP132复合物内的AHA1结合显着降低,并增加了叶组织质膜上AHA1蛋白的密度。操纵拟南芥中的SYP132功能可增强对盐度胁迫的抵抗力,在异源系统中的分析表明,SNARE会影响PIP2;1渗透水的渗透性。因此,我们建议SYP132协调质膜上的AHA1和PIP2;1丰度,并影响叶片水力学以调节植物对非生物胁迫信号的反应。
    In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    不同类型的细胞在不同的刺激或生理条件下摄取脂肪酸;然而,关于脂肪酸摄取的上下文特异性调节知之甚少。这里,我们发现肌肉损伤诱导肌肉干细胞(MuSCs)摄取脂肪酸以促进其增殖和肌肉再生。在人类和老鼠中,肌肉损伤后脂肪酸被动员起来。通过CD36,脂肪酸充当燃料和生长信号以促进MuSC增殖。机械上,损伤引发CD36在MuSCs中的易位,这依赖于STX11的动态棕榈酰化。棕榈酰化促进STX11/SNAP23/VAMP4SANRE复合物的形成,刺激含有CD36和STX11的囊泡的融合。限制脂肪酸供应,阻止脂肪酸吸收,或抑制STX11棕榈酰化减弱小鼠的肌肉再生。我们的研究已经确定了脂肪酸在肌肉再生中的关键作用,并阐明了脂肪酸感知和摄取的上下文特异性调节。
    Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    淋病奈瑟菌通过其IV型菌毛的活性与粘膜上皮建立紧密的相互作用,而菌毛回缩力还激活了对入侵淋球菌的自噬反应。在这里,我们研究了不依赖菌毛的上皮细胞反应,并表明存在于早期和晚期内体的菌毛阴性淋球菌被核苷酸结合寡聚化结构域1(NOD1)检测和靶向。NOD1随后与免疫相关的鸟苷三磷酸酶M(IRGM)和自噬相关的16样1(ATG16L1)形成复合物,以激活自噬并招募微管相关蛋白轻链3(LC3)到胞内细菌。IRGM还直接招募语法17(STX17),能够与溶酶体形成系链复合物。重要的是,IRGM/STX17相互作用被LC3增强,但在LC3敲除细胞系中仍以较低水平观察到。这些发现证明了NOD1和IRGM在感测细胞内淋病奈瑟菌以及随后将细菌引导至溶酶体进行降解中的关键作用。
    Neisseria gonorrhoeae establishes tight interactions with mucosal epithelia through activity of its type IV pilus, while pilus retraction forces activate autophagic responses toward invading gonococci. Here we studied pilus-independent epithelial cell responses and showed that pilus-negative gonococci residing in early and late endosomes are detected and targeted by nucleotide-binding oligomerization domain 1 (NOD1). NOD1 subsequently forms a complex with immunity-related guanosine triphosphatase M (IRGM) and autophagy-related 16-like 1 (ATG16L1) to activate autophagy and recruit microtubule-associated protein light chain 3 (LC3) to the intracellular bacteria. IRGM furthermore directly recruits syntaxin 17 (STX17), which is able to form tethering complexes with the lysosome. Importantly, IRGM-STX17 interactions are enhanced by LC3 but were still observed at lower levels in an LC3 knockout cell line. These findings demonstrate key roles for NOD1 and IRGM in the sensing of intracellular N gonorrhoeae and subsequent directing of the bacterium to the lysosome for degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    维持细胞活力依赖于质膜的完整性,损坏时必须修理。可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)介导的膜融合是参与膜修复的重要机制。在C.elegans表皮细胞hyp7中,syntaxin-2(SYX-2)促进了大膜伤口的修复;然而,潜在的分子机制尚不清楚.这里,我们发现SNAP-25蛋白RIC-4和突触蛋白SEC-22是伤口部位SYX-2募集所必需的。它们相互作用形成SNARE复合物以促进体内膜修复和体外融合。此外,我们发现SEC-22位于多个细胞内区室,包括内体和跨高尔基网络,招募到伤口。此外,抑制RAB-5破坏SEC-22的定位并阻止其与SYX-2的相互作用。我们的发现表明,RAB-5促进了RIC-4/SEC-22/SYX-2SNARE复合物的形成,并为细胞修复大膜伤口的分子机制提供了有价值的见解。
    Maintaining cellular viability relies on the integrity of the plasma membrane, which must be repaired upon damage. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is a crucial mechanism involved in membrane repair. In C. elegans epidermal cell hyp 7, syntaxin-2 (SYX-2) facilitates large membrane wound repair; however, the underlying molecular mechanism remains unclear. Here, we found that SNAP-25 protein RIC-4 and synaptobrevin protein SEC-22 are required for SYX-2 recruitment at the wound site. They interact to form a SNARE complex to promote membrane repair in vivo and fusion in vitro. Moreover, we found that SEC-22 localized in multiple intracellular compartments, including endosomes and the trans-Golgi network, which recruited to the wounds. Furthermore, inhibition of RAB-5 disrupted SEC-22 localization and prevented its interaction with SYX-2. Our findings suggest that RAB-5 facilitates the formation of the RIC-4/SEC-22/SYX-2 SNARE complex and provides valuable insights into the molecular mechanism of how cells repair large membrane wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号