Pyruvic acid

丙酮酸
  • 文章类型: Journal Article
    电荷快速重组的持续障碍,光的低效使用和牺牲试剂的利用一直困扰着光催化析氢(PHE)领域。在这项研究中,通过简单的溶剂热法制备直径为10nm的微小MoO2纳米颗粒,并以特定比例的油胺和油酸作为稳定剂。发现合成过程中的关键因素是油胺与油酸的比例。此外,两相界面组装方法促进了MoO2在CdS纳米棒上的均匀沉积。由于MoO2表面的局部等离子体热电效应及其丰富的氧空位,复合催化剂表现出优异的光利用效率和丰富的活性位点。CdS-MoO2复合材料在将乳酸转化为丙酮酸并同时产生氢气方面表现出独特的光化学性质。暴露于人造阳光下4小时后,氢气生产和丙酮酸形成的显著值分别为4.7和3.7mmol·g-1·h-1,分别,单独超过CdS3.29倍和4.02倍,丙酮酸的选择性为95.68%。此外,使用电子顺磁共振(EPR)光谱阐明了复合材料中的S-Scheme电子传输机制,自由基捕获实验,能带结构分析,以及选择性氧化过程中关键中间体的确定。这项工作为设计和制备用于生物精炼和高效析氢的高性能光催化剂提供了启示。
    The persistent hurdles of charge rapid recombination, inefficient use of light and utilization of sacrificial reagents have plagued the field of photocatalytic hydrogen evolution (PHE). In this research, tiny MoO2 nanoparticles of 10 nm in diameter were prepared through a straightforward solvothermal approach with a specific ratio of oleylamine and oleic acid as stabilizers. The critical factor in the synthesis process was found to be the ratio of oleylamine to oleic acid. Moreover, a two-phase interface assembly method facilitated the uniform deposition of MoO2 onto CdS nanorods. Due to the localized plasmonic-thermoelectric effect on the surface of MoO2 along with its abundant oxygen vacancies, the composite catalyst exhibited outstanding photo-utilization efficiency and an abundance of active sites. The CdS-MoO2 composite displayed a unique photochemical property in transforming lactic acid into pyruvic acid and generating hydrogen simultaneously. After exposure to artificial sunlight for 4 h, significant values of 4.7 and 3.7 mmol⋅g-1⋅h-1 were achieved for hydrogen production and pyruvic acid formation, respectively, exceeding CdS alone by 3.29 and 4.02-fold, while the selectivity of pyruvic acid was 95.68 %. Furthermore, the S-Scheme electron transport mechanism in the composites was elucidated using Electron Paramagnetic Resonance (EPR) spectroscopy, radical trapping experiments, energy band structure analysis, and the identification of critical intermediates in the process of selective oxidation. This work sheds light on the design and preparation of high-performance photocatalysts for biorefining coupled with efficient hydrogen evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷酸烯醇丙酮酸-草酰乙酸-丙酮酸衍生的氨基酸(POP-AA)是细胞代谢中的天然中间体,其中磷酸烯醇丙酮酸-草酰乙酸-丙酮酸(POP)节点是大多数生物体中存在的主要代谢途径之间的转换点。POP-AA在营养学中有着广泛的应用,食物,和制药行业。这些氨基酸主要通过微生物发酵在大肠杆菌和谷氨酸棒杆菌中产生。随着市场需求的迅速增加,随着全球粮食短缺的形势,这两种细菌的工业生产能力遇到了两个瓶颈:产品转化效率低和原材料成本高。旨在推动具有更高产量和生产率的工程菌株的更新和升级,本文全面总结了磷酸烯醇丙酮酸-草酰乙酸-丙酮酸节点的代谢工程技术的基本策略,包括L-色氨酸,L-酪氨酸,L-苯丙氨酸,L-缬氨酸,L-赖氨酸,L-苏氨酸,和L-异亮氨酸.应考虑关于POP节点中碳通量再分布和氨基酸形成的新的异源途径和调节方法,以提高POP-AA的产量,使其接近最大理论值。此外,展望了未来低成本原料和能源利用发展氨基酸过剩生产者的战略。
    The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    透皮行为是研究递送系统和评估化妆品功效的关键方面。然而,现有的方法面临的挑战,如漫长的实验,高成本,和有限的模型精度。因此,开发准确的透皮模型对于制剂开发和有效性评估至关重要。在这项研究中,我们开发了一个多尺度模型来描述活性成分在角质层中的透皮行为。使用分子动力学模拟来构建脂质双层并确定活性成分在这些双层的不同区域中的扩散系数。使用有限元模拟将这些扩散系数整合到多层脂质途径模型中。模拟结果与我们对三种活性成分(扁桃酸(MAN)、烟酰胺(NIC),和丙酮酸(PYR)),证明了我们多尺度模型的有效性。这项研究为推进透皮给药方法提供了有价值的见解。
    Transdermal behavior is a critical aspect of studying delivery systems and evaluating the efficacy of cosmetics. However, existing methods face challenges such as lengthy experiments, high cost, and limited model accuracy. Therefore, developing accurate transdermal models is essential for formulation development and effectiveness assessment. In this study, we developed a multiscale model to describe the transdermal behavior of active ingredients in the stratum corneum. Molecular dynamics simulations were used to construct lipid bilayers and determine the diffusion coefficients of active ingredients in different regions of these bilayers. These diffusion coefficients were integrated into a multilayer lipid pathway model using finite element simulations. The simulation results were in close agreement with our experimental results for three active ingredients (mandelic acid (MAN), nicotinamide (NIC), and pyruvic acid (PYR)), demonstrating the effectiveness of our multiscale model. This research provides valuable insights for advancing transdermal delivery methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丙酮酸盐位于真核生物碳代谢的关键节点。它参与多种细胞器的多种代谢途径,它的细胞器间穿梭对细胞健康至关重要。许多牙尖丛寄生虫都有一种独特的细胞器,称为牙尖体,它容纳着脂肪酸和类异戊二烯前体生物合成等代谢途径,需要丙酮酸作为底物。然而,丙酮酸盐是如何在Apicoplast中提供的仍然是个谜。这里,部署人畜共患寄生虫弓形虫作为模型的顶部丛,我们鉴定了两种存在于生皮膜中的蛋白质,它们共同构成一种功能性的生皮膜丙酮酸载体(APC),以介导胞浆丙酮酸的输入.APC的耗竭会导致峰顶体中代谢途径的活性降低和细胞器的完整性受损。导致寄生虫生长停滞。APC是一种丙酮酸转运蛋白,存在于不同的顶丛寄生虫中,提示在这些临床相关的细胞内病原体中通过峰顶体获得丙酮酸的常见策略。
    Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    苹果酶(ME)催化由丙酮酸和CO2合成L-苹果酸(L-MA),NADH是L-MA脱羧的逆反应。羧基化需要过量的丙酮酸,限制其应用。在这项研究中,通过分析HCO3-和CO2的作用,确定CO2为羧基供体,为提高L-MA收率提供了依据。此外,使用CO2抑制脱羧并引入Km比野生型低2倍的ME突变体A464S,丙酮酸与NADH的浓度比从70:1降低到5:1。最后,羧化与NADH再生偶联,导致基于丙酮酸初始浓度的77%的最大L-MA产率。战略修改,包括最佳反应物比例和有效的突变ME,显著增强了从CO2合成L-MA,为生物转化过程提供了一种有前途的方法。
    The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA相互作用组及其多样化的功能最近受益于关键的方法学进展,导致从RNA在发病机理中的调节作用的传统概念的范式转变。然而,人类CRC腺瘤-癌序列中的动态RNA间细胞瘤仍未被研究。腺瘤的共存,癌症,结直肠癌(CRC)患者的正常组织为解决这一问题提供了合适的模型。这里,我们采用RNA原位构象测序技术在CRC患者中定位RNA-RNA相互作用.我们观察到大规模配对RNA计数,并鉴定了一些独特的RNA复合物,包括多个配偶体RNA。单伙伴RNA,非重叠单配偶体RNA。我们专注于反义RNAOIP5-AS1,发现OIP5-AS1可以海绵不同的miRNA来调节包括丙酮酸盐在内的代谢物的产生,丙氨酸和乳酸。我们的发现为CRC的发病机制提供了新的观点,并建议丙酮酸的代谢重编程用于CRC的早期诊断和治疗。
    RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    破坏肿瘤外/肿瘤内代谢的共生是治疗从肿瘤微环境中穿梭资源的肿瘤的良好策略。这里,我们报道了一种提高丙酮酸和肿瘤内酸中毒以破坏肿瘤代谢共生以消除肿瘤的精准治疗策略;该方法基于聚乙二醇化金和乳酸氧化酶修饰的胺化树突状介孔二氧化硅,负载有隆尼胺和硫化亚铁(PEG-Au@DMSNs/FeS/LND@LOX).在肿瘤微环境中,LOX氧化乳酸产生丙酮酸,它通过抑制组蛋白基因表达来抑制肿瘤细胞的增殖,并通过部分组蛋白单氮化来诱导铁凋亡。在酸性肿瘤条件下,纳米粒子释放H2S气体和Fe2+离子,抑制过氧化氢酶活性促进Fe2+的Fenton反应,通过Fe3+产生大量的·OH和铁中毒。更有趣的是,H2S和LND(单羧酸转运蛋白抑制剂)的组合可以通过乳酸引起细胞内酸中毒,质子在细胞中过度积累。多种细胞内酸中毒是由乳酸-丙酮酸轴紊乱引起的。此外,H2S提供动力以增强纳米颗粒在肿瘤区域中的穿梭。研究结果证实,这种纳米医疗系统可以通过破坏肿瘤外/肿瘤内代谢共生和诱导铁凋亡来实现精确的抗肿瘤作用,并代表了一种有前途的活性药物递送系统候选肿瘤治疗。
    Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乳酸脱氢酶A(LDHA)主要催化乳酸和丙酮酸之间的转化,作为肿瘤细胞中糖的有氧糖酵解途径的关键酶。LDHA在其发生中起着至关重要的作用,发展,programming,入侵,转移,血管生成,和肿瘤的免疫逃逸。因此,LDHA不仅是肿瘤诊断和预后的生物标志物,也是肿瘤治疗的理想靶点。虽然LDHA抑制剂显示出巨大的治疗潜力,事实证明,他们的发展具有挑战性。在LDHA抑制剂的开发中,强调了LDHA的关键活性位点。然而,对LDHA活性中心周围氨基酸残基的研究相对缺乏。因此,在这项研究中,我们研究了LDHA活性中心周围的氨基酸残基。通过结构对比分析,鉴定了五个关键氨基酸残基(Ala30、Met41、Lys131、Gln233和Ala259)。随后,使用定点诱变研究了这五个残基对LDHA酶学性质的影响。结果表明,从乳酸到丙酮酸和丙酮酸到乳酸的反应中,五种突变体的催化活性都有不同程度的变化。值得注意的是,LDHAM41G和LDHAK131I的催化活性得到了提高,特别是在LDHAK131I的情况下。LDHAK131I的分子动力学分析结果解释了这种现象的原因。此外,LDHAM41G和LDHAQ233M的最佳温度从35°C增加到40°C,而在逆反应中,LDHAM41G和LDHAK131I的最佳温度从70℃降至60℃。这些发现表明Ala30,Met41,Lys131,Gln233和Ala259对LHDA的催化活性和最佳温度具有不同的影响。因此,这些氨基酸残基,除了活性中心的关键催化位点,发挥关键作用。在LDHA抑制剂的设计和筛选中考虑这些残基可能导致开发更有效的抑制剂。
    Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在源自原发肿瘤的好客器官中形成转移前生态位(PMN)需要肿瘤细胞与宿主环境之间的联系。丙酮酸盐是肿瘤细胞代谢重塑肺细胞外基质以促进其自身转移发展的基本营养素。在这里,我们报告了一种组合方案,通过将光敏剂和线粒体丙酮酸载体(MPC)抑制剂整合到树枝状聚碳酸酯核-透明质酸壳纳米平台中,其中嵌入了多价可逆交联剂(DOH-NIL),以增强光动力疗法(PDT)对原发性肿瘤的作用,并通过阻止丙酮酸摄取来中断肺部PMN的形成。我们显示DOH-NI+L介导肿瘤特异性MPC抑制剂释放,抑制有氧呼吸促进PDT和抑制ATP生成麻痹细胞侵袭。值得注意的是,DOH-NI+L被证明通过抑制丙酮酸代谢来阻断肿瘤细胞-宿主环境的代谢串扰,引起一系列代谢反应,导致肺PMN中断。因此,DOH-NI+L实现了显著的原发肿瘤抑制和有效的肺转移预防。我们的研究扩展了针对PMN干预的基于纳米的抗转移策略,这种树突状核壳纳米抑制剂提供了一种创新的范例,可以有效地抑制肿瘤生长和预防转移。重要性声明:在癌症转移的进展中,在源自原发肿瘤的好客器官中形成转移前生态位(PMN)是限速阶段之一。目前基于纳米的抗转移方式主要集中在靶向杀伤肿瘤细胞和特异性抑制肿瘤细胞侵袭,而纳米医学介导的PMN形成中断的报道很少。在这里,我们报告了一种组合方案,通过将光敏剂和线粒体丙酮酸盐载体抑制剂整合在树突状核壳纳米平台中,其中嵌入了可逆交联剂,以增强对原发性肿瘤的PDT并通过阻止丙酮酸盐的摄取来中断PMN的形成,丙酮酸盐是促进有氧呼吸和PMN形成的基本营养素。我们的研究提出了一种基于纳米的针对PMN干预的抗转移策略。
    The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丙酮酸(PA)是大气中普遍存在的2-氧代羧酸。它在气液(a-l)界面处的光化学过程已被认为是水性二次有机气溶胶的重要来源。我们使用基于同步加速器的真空紫外单光子电离质谱(VUVSPI-MS)和液体真空界面分析系统(SALVI)微反应器,研究了PA在a-l界面的光化学反应途径。质谱分析和外观能(AE)的测定结果表明,PA的光解可以产生自由基,然后它们与羧酸和简单的分子低聚物重组。此外,在羟基和羧基官能团的存在下,初步产物可以通过自由基反应或酯化形成较大的低聚物。质谱比较表明,大多数光化学反应将在4小时内完成。基于新发现的产物,提出了PA的扩展光化学驱动反应流程图。我们的结果表明,由于界面性质,界面PA光化学反应具有不同于本体液体的机理,例如分子密度,composition,和离子浓度。我们的发现表明,具有亮光子电离的原位质谱分析可用于阐明a-l界面反应导致aqSOA形成的贡献。
    Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor. Results from mass spectral analysis and the determination of appearance energies (AEs) indicate that photolysis of PA can generate radicals, then they recombine with carboxylic acids and simple molecular oligomers. Furthermore, the preliminary products could form larger oligomers via radical reaction or esterification in the presence of hydroxyl and carboxyl functional groups. Mass spectral comparison shows that most photochemical reactions would complete within 4 h. The expanded photochemistry-driven reaction flowchart of PA is proposed based on the newly discovered products. Our results reveal that the interfacial PA photochemical reactions have different mechanisms from the bulk liquid due to the interfacial properties, such as molecular density, composition, and ion concentration. Our findings show that in situ mass spectral analysis with bright photon ionization is useful to elucidate the contribution of a-l interfacial reactions leading to aqSOA formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号