PFV

PFV
  • 文章类型: Journal Article
    泡沫病毒是逆转录病毒科的Spumaretrovirinae亚科的成员。它们诱导细胞空泡化,并在感染细胞后表现出泡沫致病作用。DACH1(dachshund家族转录因子1)是与肿瘤发展相关的关键细胞因子,并与许多不同恶性肿瘤细胞的生长有关。此外,DACH1抑制胰腺细胞增殖并参与糖尿病胰岛素信号传导。原型泡沫病毒(PFV)用于研究FV对细胞DACH1表达的调节机制。结果表明,DACH1在PFV感染的细胞中的表达在转录和蛋白质水平上都不一致。在转录水平,DACH1被PFV反式激活剂Tas显著激活,和双荧光素酶报告基因测试,EMSA,和ChIP测定在DACH1启动子中发现了21个核苷酸的Tas反应元件。PFV和Tas没有以与DACH1转录表达高水平一致的方式提高DACH1蛋白的水平。注意到Tas增加了Ser/Thr蛋白磷酸酶PPM1E的表达,引起PPM1E介导的DACH1翻译后亚糖基化改变,促使DACH1降解。DACH1蛋白降解的原因是DACH1抑制PFV复制。总而言之,这些发现表明PFV上调DACH1的转录,同时促使其蛋白进入PPM1E介导的SUMO化,消除DACH1过表达宿主细胞对病毒复制的不良影响,促进病毒存活。
    Foamy viruses are members of the Retroviridae family\'s Spumaretrovirinae subfamily. They induce cell vacuolation and exhibit a foamy pathogenic impact after infecting cells. DACH1 (dachshund family transcription factor 1) is a crucial cytokine linked to tumor development, and is associated with the growth of many different malignant tumor cells. Additionally, DACH1 suppresses pancreatic cell proliferation and is involved in diabetes insulin signaling. Prototype foamy viruses (PFVs) were used for the investigation of the regulatory mechanism of FVs on cellular DACH1 expression. The results show that DACH1 expression in PFV-infected cells was inconsistent at both the transcriptional and protein levels. At the transcriptional level, DACH1 was significantly activated by PFV transactivator Tas, and dual-luciferase reporter gene tests, EMSA, and ChIP assays found a Tas response element of 21 nucleotides in the DACH1 promoter. PFV and Tas did not boost the levels of DACH1 protein in a manner consistent with the high levels of DACH1 transcription expression. It was noted that Tas increased the expression of the Ser/Thr protein phosphatase PPM1E, causing PPM1E-mediated post-translational SUMOylation alterations of DACH1 to prompt DACH1 to degrade. The reason for DACH1 protein degradation is that DACH1 inhibits PFV replication. To sum up, these findings show that PFV upregulated the transcription of DACH1, while urging its protein into PPM1E-mediated SUMOylation, to eliminate the adverse effect of DACH1 overexpression of host cells on viral replication and promote virus survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Non-small cell lung cancer (NSCLC) is a malignant cancer characterized by easy invasion, metastasis and poor prognosis, so that conventional chemotherapy cannot inhibit its invasion and metastasis. Doxorubicin (DOX), as a broad-spectrum antitumour drug, cannot be widely used in clinic because of its poor targeting, short half-life, strong toxicity and side effects. Therefore, the aim of our study is to construct a kind of PFV modified DOX plus schisandrin B liposomes to solve the above problems, and to explore its potential mechanism of inhibiting NSCLC invasion and metastasis. The antitumour efficiency of the targeting liposomes was carried out by cytotoxicity, heating ablation, wound healing, transwell, vasculogenic mimicry channels formation and metastasis-related protein tests in vitro. Pharmacodynamics were evaluated by tumour inhibition rate, HE staining and TUNEL test in vivo. The enhanced anti-metastatic mechanism of the targeting liposomes was attributed to the downregulation of vimentin, vascular endothelial growth factor, matrix metalloproteinase 9 and upregulation of E-cadherin. In conclusion, the PFV modified DOX plus schisandrin B liposomes prepared in this study provided a treatment strategy with high efficiency for NSCLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    As a malignant tumor, breast cancer is very prone to metastasis. Chemotherapy is one of the most common means for treating breast cancer. However, due to the serious metastasis and the poor targeting effect of traditional chemotherapeutic drugs, even after years of efforts, the therapeutic effect is still unsatisfied. Therefore, in this study, we constructed a kind of PFV modified epirubicin plus schisandrin B liposomes to solve the above disadvantages. In vitro experiments showed that the targeting liposomes with ideal physicochemical property could increase the cytotoxicity of MDA-MB-435S cells, destroy the formation of vasculogenic mimicry (VM), and inhibit tumor invasion and migration. Action mechanisms indicated that the inhibition of targeting liposomes on tumor metastasis was attributed to the regulation of the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), vimentin (VIM), and E-cadherin (E-cad). In vivo pharmacodynamic experiments showed that the targeting liposomes could significantly improve the antitumor effect in mice. H&E staining and TUNEL results showed that the targeting liposomes could promote the apoptosis of tumor cells. Hence, the PFV modified epirubicin plus schisandrin B liposomes constructed in this study provided a new therapeutic strategy for breast cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Human BST2 (hBST2, also called Tetherin) is a host restriction factor that blocks the release of various enveloped viruses. BST2s from different mammals also possess antiviral activity. Bovine BST2s (bBST2s), bBST2A1 and bBST2A2, reduce production of cell-free bovine leukemia virus (BLV) and vesicular stomatitis virus (VSV). However, the effect of bBST2 on other retroviruses remains unstudied.
    Here, we studied the antiviral activity of wildtype and mutant bBST2A1 proteins on retroviruses including human immunodeficiency virus type 1 (HIV-1), prototypic foamy virus (PFV), bovine foamy virus (BFV) and bovine immunodeficiency virus (BIV). The results showed that wildtype bBST2A1 suppressed the release of HIV-1, PFV and BFV. We also generated bBST2A1 mutants, and found that GPI anchor and dimerization, but not glycosylation, are essential for antiviral activity of bBST2A1. Moreover, unlike hBST2, bBST2A1 displayed no inhibitory effect on cell-to-cell transmission of PFV, BFV and BIV.
    Our data suggested that bBST2A1 inhibited retrovirus release, however, had no effect on cell-to-cell transmission of retroviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Prototype foamy virus (PFV) is a member of the Spumaretrovirinae subfamily of retroviruses, which maintains lifelong latent infection while being nonpathogenic to their natural hosts. Autophagy is a cell-programmed mechanism that plays a pivotal role in controlling homeostasis and defense against exotic pathogens. However, whether autophagy is the mechanism for host defense in PFV infection has not been investigated.
    Our results revealed that PFV infection induced the accumulation of autophagosomes and triggered complete autophagic flux in BHK-21 cells. PFV infection also altered endoplasmic reticulum (ER) homeostasis. The PERK, IRE1 and ATF6 pathways, all of which are components of the ER stress-related unfolded protein response (UPR), were activated in PFV-infected cells. In addition, accelerating autophagy suppressed PFV replication, and inhibition of autophagy promoted viral replication.
    Our data indicate that PFV infection can induce complete autophagy through activating the ER stress-related UPR pathway in BHK-21 cells. In turn, autophagy negatively regulates PFV replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号