Ground beef

碎牛肉
  • 文章类型: Journal Article
    蓝氏假单胞菌和热球菌是需氧储存的冷冻肉中的关键腐败微生物。本研究旨在研究以单一或共培养(BP)形式接种冷冻碎牛肉的P.lundenis(PL)和B.thermosphacta(BT)的理化和代谢组学特征。蓝氏芽孢杆菌是碎牛肉共培养中的主要腐败菌株。大量的TCA可溶性肽,TVB-N和TBA在PL和BP中形成,虽然种子主要在BT中产生,随着不同的感官和颜色的变化。肉类代谢组表明95、396和409个代谢产物具有显著差异,在接种BT的碎牛肉中鉴定,PL,BP,分别。这些差异代谢物涵盖了58个代谢途径,其中组氨酸代谢被确定为与三组腐败有关的重要途径。具体来说,肌酸,肌苷,Anseri,尿嘧啶,丙氨酸,谷氨酰胺,3-甲基组氨酸和3-羟基癸酸作为潜在的腐败生物标志物富集。一起来看,这些发现揭示了热球芽孢杆菌和伦氏芽孢杆菌共同培养的复杂和竞争性相互作用,这提供了对冷却牛肉中微生物腐败机制的全面了解。
    Pseudomonas lundensis and Brochothrix thermosphacta are key spoilage microorganisms in aerobically stored chilled meat. The present study aimed to investigate the physicochemical and metabolomic profiles of refrigerated ground beef inoculated P. lundensis (PL) and B. thermosphacta (BT) as mono- or co-culture (BP). P. lundensis was the dominant spoilage strain in the co-culture of ground beef. A large amount of TCA-soluble peptide, TVB-N and TBA were formed in the PL and BP, while acetion was mainly produced in the BT, as accompanied by the different sensory and color changes. Meat metabolome indicated that 95, 396, and 409 metabolites with significant differences, were identified in ground beef inoculated BT, PL, and BP, respectively. These differential metabolites covered 58 metabolic pathways, in which histidine metabolism was identified as an important pathway related to spoilage in the three groups. Specifically, creatine, inosine, anserine, uracil, alanine, glutamine, 3-methylhistidine and 3-hydroxycapric acid were enriched as potential spoilage biomarkers. Taken together, those findings reveal the complex and competitive interactions of their co-culture of B. thermosphacta and P. lundensis, which provided a comprehensive insight into microbial spoilage mechanism in chilled beef.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cattle are a reservoir for enterohemorrhagic Escherichia coli (EHEC), and ground beef is a major vehicle for human infection with EHEC. Heat resistance of E. coli, including EHEC, is impacted by NaCl and other additives. This study aimed to evaluate the effect of NaCl and other additives on the heat resistance of E. coli in beef patties. E. coli AW1.7ΔpHR1(pLHR) with the locus of heat resistance (LHR), E. coli AW1.7ΔpHR1(pRK767) without LHR, or a 5-strain cocktail of EHEC were inoculated (107-108 CFU/g) into ground beef (15% fat) with NaCl (0-3%), marinade, carvacrol (0.1%), potassium lactate (3%) or chitosan (0.1%) following different protocols. Patties were grilled immediately, or stored in sterile bags for two days at 4 °C prior to grilling to a core temperature of 71 °C. Cell counts of LHR-positive E. coli AW1.7ΔpHR1(pLHR) were higher than that of the isogenic LHR-negative E. coli AW1.7ΔpHR1(pRK767) by >3 log10 (CFU/g) after cooking. Addition of 3% NaCl increased survival of E. coli AW1.7ΔpHR1(pRK767) and the EHEC cocktail while cell counts of the heat resistant strains were not changed. A protective effect of NaCl was not observed with E. coli AW1.7ΔpHR1(pRK767) or EHEC if cells of E. coli were cooled to 4 °C prior to mixing with cold meat and NaCl, indicating that the response of E. coli to osmotic shock contributes to this effect. Chitosan enhanced the thermal destruction of LHR-positive E. coli AW1.7ΔpHR1(pLHR) in ground beef stored at 4 °C for 2 days, while marinade, carvacrol, or potassium lactate had no such effect, indicating that chitosan can be characterized as an effective hurdle concept to reduce the potential risk of LHR-positive pathogen to meat safety.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Evaluation Study
    High pressure processing (HPP) has previously been shown to be effective at reducing Escherichia coli O157:H7 in meat products. However, few studies have determined whether HPP may be effective at reducing non-O157:H7 Shiga toxin-producing E. coli (STEC) in ground beef. This study investigated the efficacy of short and repeated HPP treatments to reduce non-O157:H7 STEC inoculated into ground beef. Irradiated ground beef patties (80:20, 90:10 [lean:fat]) were inoculated with pairs of E. coli serogroups O103, O111, O26, O145, O121, O45, O157:H7, and DH5α, vacuum-packaged and high-pressure processed (four, 60 s cycles, 400 MPa, 17°C). Surviving E. coli populations were enumerated on Rainbow Agar O157 and Tryptic Soy Agar. HPP treatments produced >2.0 log₁₀ CFU/g reductions of each E. coli serogroup, and reductions ranged from 2.35-3.88 and 2.26-4.31 log₁₀ CFU/g in 80:20 and 90:10 samples, respectively. These results suggest that HPP could be an effective, post-processing intervention to reduce the risk of non-O157:H7 STEC contamination in ground beef.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号