GTF2IRD1

Gtf2ird1
  • 文章类型: Journal Article
    General Transcription Factor II-I Repeat Domain-Containing Protein 1 (GTF2IRD1) is a member of the GTF21 gene family, which encodes a set of multifunctional transcription factors. However, the potential function of GTF2IRD1 in pancreatic cancer (PC) still remains unknown. Study on GTF2IRD1 might provide a new insight into the carcinogenesis and therapeutics of PC.
    In the current study, the clinical significance and potential biological of GTF2IRD1 were evaluated by bioinformatics analysis. The oncogenic role of GTF2IRD1 in PC was also determined using in vitro studies. Possible associations between GTF2IRD1 expression and tumor immunity were analyzed using ESTIMATE algorithm and single-sample Gene Set Enrichment Analysis (ssGSEA).
    GTF2IRD1 expression was significantly up-regulated in tumor tissues, and positively associated with higher histologic grade, higher American Joint Committee on Cancer (AJCC) stage, and worse prognosis. Function enrichment analysis demonstrated that GTF2IRD1 may be involved in pancreatic adenocarcinoma pathway, TGF-β signaling pathway, and tumor-infiltrating lymphocyte (TIL) related biological functions, such as T-cell receptor signaling pathway, leukocyte transendothelial migration, resistin as a regulator of inflammation, and regulation of leukocyte-mediated cytotoxicity. Knockdown of GTF2IRD1 expression inhibited cancer cell proliferation, colony formation, and invasion in vitro. ESTIMATE algorithm and ssGSEA demonstrated that GTF2IRD1 expression negatively correlated with the infiltration and anti-tumor activity of TILs, especially for CD8+ T cells.
    The study demonstrates that GTF2IRD1 overexpression promotes tumor progression and correlates with less CD8+ T cells infiltration in PC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Variants at the GTF2I repeat domain containing 1 (GTF2IRD1)-GTF2I locus are associated with primary Sjögren\'s syndrome, systemic lupus erythematosus, and rheumatoid arthritis. Numerous studies have indicated that this susceptibility locus is shared by multiple autoimmune diseases. However, until now there were no studies of the correlation between GTF2IRD1-GTF2I polymorphisms and neuromyelitis optica spectrum disorders (NMOSD). This case control study assessed this association by recruiting 305 participants with neuromyelitis optica spectrum disorders and 487 healthy controls at the Department of Neurology, from September 2014 to April 2017. Peripheral blood was collected, DNA extracteds and the genetic association between GTF2IRD1-GTF2I polymorphisms and neuromyelitis optica spectrum disorders in the Chinese Han population was analyzed by genotyping. We found that the T allele of rs117026326 was associated with an increased risk of neuromyelitis optica spectrum disorders (odds ratio (OR) = 1.364, 95% confidence interval (CI) 1.019-1.828; P = 0.037). This association persisted after stratification analysis for aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) positivity (OR = 1.397, 95% CI 1.021-1.912; P = 0.036) and stratification according to coexisting autoimmune diseases (OR = 1.446, 95% CI 1.072-1.952; P = 0.015). Furthermore, the CC genotype of rs73366469 was frequent in AQP4-IgG-seropositive patients (OR = 3.15, 95% CI 1.183-8.393, P = 0.022). In conclusion, the T allele of rs117026326 was associated with susceptibility to neuromyelitis optica spectrum disorders, and the CC genotype of rs73366469 conferred susceptibility to AQP4-IgG-seropositivity in Han Chinese patients. The protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval number: 2016-31) on March 2, 2016.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号