Excitatory Amino Acid Agonists

兴奋性氨基酸激动剂
  • 文章类型: Journal Article
    为了研究表达N-甲基-D-天冬氨酸受体(NMDAR)的突触和突触外神经元中24小时表达的长链非编码RNA(lncRNAs),和正常的神经元培养,通过微阵列分析。
    将来自胚胎(E18天)Sprague-Dawley大鼠的皮质神经元用于原代神经元培养。阻断NMDAR活化,然后将细胞孵育6小时。提取总RNA,量化,并分析纯度和完整性。双链cDNA合成,其次是分位数归一化,定量聚合酶链反应验证,和数据分析。通过Pearson相关性分析转录因子与lncRNAs之间的相互作用。
    在大鼠皮质神经元培养物的突触和突触外NMDAR激活24小时后获得lncRNA谱。总的来说,251个lncRNAs持续上调,335被下调,与正常神经元相比,突触外NMDAR激活后。突触NMDAR激活后,只有9个lncRNAs上调,2个下调。
    突触和突触外NMDAR激活后lncRNAs的差异表达表明lncRNAs可能是突触外NMDAR诱导的神经变性的原因。
    To study the 24-hour expression of long noncoding RNAs (lncRNAs) in synaptic and extrasynaptic neurons expressing N-methyl-D-aspartate receptor (NMDAR), and normal neuronal cultures, via microarray analysis.
    Cortical neurons from embryonic (day E18) Sprague-Dawley rats were used for primary neuronal culture. NMDAR activation was blocked and the cells were then incubated for 6 hours. Total RNA was extracted, quantified, and analyzed for purity and integrity. Double-stranded cDNA was synthesized, followed by quantile normalization, quantitative polymerase chain reaction validation, and data analysis. The interactions between transcription factors and lncRNAs were analyzed by Pearson correlation.
    The lncRNA profiles were obtained after synaptic and extrasynaptic NMDAR activation of rat cortical neuron cultures for 24 hours. In total, 251 lncRNAs were consistently upregulated, and 335 were downregulated, after extrasynaptic NMDAR activation compared with normal neurons. After synaptic NMDAR activation, only 9 lncRNAs were upregulated and 2 were downregulated.
    Differential expression of lncRNAs after synaptic and extrasynaptic NMDAR activation suggests that lncRNAs may be responsible for extrasynaptic NMDAR-induced neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The lateral parabrachial nucleus (LPBN) is known to relay noxious information to the amygdala for processing affective responses. However, it is unclear whether the LPBN actively processes neuropathic pain characterized by persistent hyperalgesia with aversive emotional responses. Here we report that neuropathic pain-like hypersensitivity induced by common peroneal nerve (CPN) ligation increases nociceptive stimulation-induced responses in glutamatergic LPBN neurons. Optogenetic activation of GABAergic LPBN neurons does not affect basal nociception, but alleviates neuropathic pain-like behavior. Optogenetic activation of glutamatergic or inhibition of GABAergic LPBN neurons induces neuropathic pain-like behavior in naïve mice. Inhibition of glutamatergic LPBN neurons alleviates both basal nociception and neuropathic pain-like hypersensitivity. Repetitive pharmacogenetic activation of glutamatergic or GABAergic LPBN neurons respectively mimics or prevents the development of CPN ligation-induced neuropathic pain-like hypersensitivity. These findings indicate that a delicate balance between excitatory and inhibitory LPBN neuronal activity governs the development and maintenance of neuropathic pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Paclitaxel-induced acute pain syndrome (P-APS), characterized by deep muscle aches and arthralgia, occurs in more than 70% of patients who receive paclitaxel. P-APS can be debilitating for patients and lead to reductions and discontinuation of potentially curable therapy. Despite being relatively common in clinical practice, no clear treatment exists for P-APS and the underlying mechanisms remain poorly defined. Regulation of glutamatergic transmission by metabotropic glutamate receptors (mGluRs) has received growing attention with respect to its role in neuropathic pain. To our knowledge, no study has been conducted on alterations and functions of group III mGluR7 signaling in P-APS.
    OBJECTIVE: In the present study, we determined whether a single administration of paclitaxel induces glutamatergic alterations and whether mGluR7 activation blocks paclitaxel-induced neuropathic pain by suppressing glial reactivity in the spinal cord.
    RESULTS: A single paclitaxel injection dose-dependently induced acute mechanical and thermal hypersensitivity, and was associated with increased glutamate level accompanied by reduction in mGluR7 expression in the spinal cord. Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocked the development of paclitaxel-induced acute mechanical and thermal hypersensitivity, without affecting the normal pain behavior of control rats. Moreover, activation of mGluR7 by AMN082 inhibited glial reactivity and decreased pro-inflammatory cytokine release during P-APS. Abortion of spinal glial reaction to paclitaxel alleviated paclitaxel-induced acute mechanical and thermal hypersensitivity.
    CONCLUSIONS: There results support the hypothesis that spinal mGluR7 signaling plays an important role in P-APS; Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocks P-APS in part by reducing spinal glial reactivity and neuroinflammatory process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Glutamate excitotoxicity may contribute to the death of retinal ganglion cell (RGC) in glaucoma and other retinal diseases such as ischemia. Deubiquitinating enzyme (DUB) inhibitors are emerging as attractive targets for pharmacological intervention in neurodegenerative diseases. However, the role of PR-619, the broad spectrum DUB inhibitor, on RGCs under different stressful environment remains largely unknown. This study was designed to investigate the role of PR-619 in regulating mitophagy of RGCs under glutamate excitotoxicity. Primary cultured RGCs were incubated with PR-619 or vehicle control in the excitotoxicity model of 100 µM glutamate treatment. Mitochondrial membrane potential was assessed by JC-1 assay. Cytotoxicity of RGCs was measured by LDH activity. Proteins levels of parkin, optineurin, LAMP1, Bax, Bcl-2 and the LC3-II/I ratio were analyzed by western blot. The distribution and morphology of mitochondria in RGCs was stained by MitoTracker and antibody against mitochondria membrane protein, and examined by confocal microscopy. We show here that in the presence of glutamate-induced excitotoxicity, PR-619 stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax. Meanwhile, PR-619 promoted the protein levels of Bcl-2, parkin, optineurin, LAMP1 and the LC3-II/I ratio. While knockdown of parkin by siRNA diminished the neuroprotective effect of PR-619 on RGCs. These findings demonstrate that PR-619 exerted a neuroprotective effect and promoted parkin-mediated mitophagy on cultured RGCs against glutamate excitotoxicity. DUB inhibitors may be useful in protecting RGCs through modulating the parkin-mediated mitophagy pathway against excitotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Pathogenesis of familial amyotrophic lateral sclerosis (ALS) linked to expansion of the chromosome 9 open reading frame 72 (C9orf72) hexanucleotide repeat that impairs C9orf72 expression. Loss of function of the C9orf72 protein is one of the three main proposed C9orf72-related ALS mechanisms. However, C9orf72 loss of function, by itself, is insufficient to cause severe phenotypes in mice. Excitotoxicity is another major disease mechanism of ALS. We speculate that loss of C9orf72 protein might cause ALS in combination with excitotoxicity. To date, the effect of C9orf72 deficiency in the background of SD rat has not been examined. To test our hypothesis, we generated a line of rat with a deletion of part of the C9orf72 gene ablating the encoded protein. These animals did not develop any ALS phenotypes; however, when they were treated with kainic acid, an excitotoxicity inducer, the rats developed motor deficits and showed loss of motor neurons (MNs), Golgi complex fragmentation, and abnormal vesicle trafficking. RNA sequencing revealed profound changes in the gene profiles that were primarily associated with neural activity. Our results demonstrated that C9orf72 ablation alone was not enough to cause ALS pathogenesis in rat; but the ablation sensitized MNs to other risk factors that synergistically caused the ALS. These results support a loss of function of C9orf72 mechanism of ALS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Major depression is a serious, but common, psychological disorder, which consists of a long-lasting depressive mood, feelings of helplessness, anhedonia, and sleep disturbances. It has been reported that rats with bilateral olfactory bulbectomies (OBXs) exhibit depressive-like behaviors which indicates that the olfactory bulb (OB) plays an important role in the formation of depression. However, which type of OB neurons plays an important role in the formation of depression remains unclear.
    OBJECTIVE: To determine the role of OB neuronal types in depression and related sleep-wake dysfunction.
    METHODS: Firstly, we established and evaluated a conventional physical bilateral OBX depression model. Secondly, we used chemical methods to ablate OB neurons, while maintaining the original shape, and evaluated depressive-like behaviors. Thirdly, we utilized AAV-flex-taCasp3-TEVp and transgenetic mice to specifically ablate the OB GABAergic or glutamatergic neurons, then evaluated depressive-like behaviors.
    RESULTS: Compared with measured parameters in sham mice, mice with OBXs or ibotenic acid-induced OB lesions exhibited depressive-like behaviors and sleep disturbances, as demonstrated by results of depressive-like behavior tests and sleep recordings. Selective lesioning of OB glutamatergic neurons, but not GABAergic neurons induced depressive-like behaviors and increased rapid eye movement sleep during the light phase of the circadian cycle.
    CONCLUSIONS: These results indicate that OB glutamatergic neurons play a key role in olfactory-related depression and sleep disturbance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    NMDA受体是介导兴奋性神经传递的配体门控离子通道。大多数天然NMDA受体是两个结合甘氨酸的GluN1和两个结合谷氨酸的GluN2亚基的四聚体组装体。甘氨酸结合GluN1与甘氨酸结合GluN3亚基(GluN3A-B)的共组装产生甘氨酸激活的受体,其与GluN1/GluN2NMDA受体相比具有显著不同的功能和药理学性质。GluN1/GluN3受体在神经元功能中的作用尚不清楚,部分原因是缺乏探索其生理作用的药理学工具。我们已经确定了负变构调节剂EU1180-438,其对GluN1/GluN3受体的选择性超过GluN1/GluN2NMDA受体,AMPA,和红藻氨酸受体。EU1180-438在GABA也不活跃,甘氨酸,和P2X受体,但显示一些烟碱乙酰胆碱受体的抑制作用。此外,我们证明EU1180-438对海马CA1锥体神经元中天然GluN1/GluN3A受体介导的甘氨酸激活的电流反应产生强烈抑制。EU1180-438是一种非竞争性拮抗剂,其活性与膜电位无关(即电压无关),甘氨酸浓度,和细胞外pH。神经元电流响应的非平稳波动分析为GluN1/GluN3A通道提供了6.1pS的估计加权平均单位电导,并显示EU1180-438对电导没有影响。定点诱变表明,EU1180-438活性的结构决定子位于短的pre-M1螺旋附近,该螺旋平行于激动剂结合域下方的膜平面。这些发现表明,可以利用GluN3和其他谷氨酸受体亚基之间的结构差异来产生亚基选择性配体,可用于探索GluN3在神经元功能中的作用。
    NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    焦虑导致全球生活质量下降和社会负担增加。然而,治疗是有限的,因为复杂情绪障碍的分子机制知之甚少。我们探讨了8-O-乙酰山芝苷甲酯(8-OaS)的抗焦虑作用,Lamiophlomisrotata中的活性成分(L.rotata;Benth.)或工藤,一种传统的草药,已被证明在中国慢性疼痛综合征的临床治疗中有效。使用两种小鼠焦虑模型:强迫游泳应激(FSS)诱导的焦虑和完全弗氏佐剂(CFA)诱导的慢性炎性疼痛。在高架迷宫和野外测试中分析了所有动物的行为。8-OaS显着改善两种焦虑模型中的焦虑样行为,并抑制GluN2A的翻译增强,GluN2B,PSD95此外,GABA受体的减少破坏了基底外侧杏仁核(BLA)的兴奋性/抑制性(E/I)平衡,表现为兴奋性增加和抑制性突触前释放减少。8-OaS还可以阻断小胶质细胞的激活并减少p38,c-JunN末端激酶(JNK)的磷酸化,焦虑小鼠BLA中的NF-κBp65和肿瘤坏死因子α(TNF-α)。8-OaS通过调节BLA中的兴奋性/抑制性(E/I)突触传递和减弱炎症反应而表现出明显的抗焦虑作用。
    Anxiety leads to a global decline in quality of life and increase in social burden. However, treatments are limited, because the molecular mechanisms underlying complex emotional disorders are poorly understood. We explored the anxiolytic effects of 8-O-acetyl shanzhiside methylester (8-OaS), an active component in Lamiophlomis rotata (L. rotata; Benth.) or Kudo, a traditional herb that has been shown to be effective in the clinical treatment of chronic pain syndromes in China. Two mouse anxiety models were used: forced swimming stress (FSS)-induced anxiety and complete Freund\'s adjuvant (CFA)-induced chronic inflammatory pain. All animal behaviors were analyzed on the elevated plus maze and in the open-field test. 8-OaS significantly ameliorated anxiety-like behaviors in both anxiety models and inhibited the translation enhancement of GluN2A, GluN2B, and PSD95. Moreover, a reduction in GABA receptors disrupted the excitatory/inhibitory (E/I) balance in the basolateral amygdala (BLA), indicated by increased excitatory and decreased inhibitory presynaptic release. 8-OaS also blocked microglia activation and reduced the phosphorylation of p38, c-Jun N-terminal kinase (JNK), NF-κB p65, and tumor necrosis factor alpha (TNF-α) in the BLA of anxiety mice. 8-OaS exhibits obvious anxiolytic effects by regulating the excitatory/inhibitory (E/I) synaptic transmission and attenuating inflammatory responses in the BLA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the predominant mediators of glutamate-induced excitatory neurotransmission. It is widely accepted that AMPA receptors are critical for the generation and spread of epileptic seizure activity. Dysfunction of AMPA receptors as a causal factor in patients with intractable epilepsy results in neurotransmission failure. Brain-specific serine/threonine-protein kinase 1 (SAD-B), a serine-threonine kinase specifically expressed in the brain, has been shown to regulate AMPA receptor-mediated neurotransmission through a presynaptic mechanism. In cultured rat hippocampal neurons, the overexpression of SAD-B significantly increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Here, we showed that SAD-B downregulation exerted antiepileptic activity by regulating AMPA receptors in patients with temporal lobe epilepsy (TLE) and in the pentylenetetrazol (PTZ)-induced epileptic model. We first used immunoblotting and immunohistochemistry analysis to demonstrate that SAD-B expression was increased in the epileptic rat brain. Subsequently, to explore the function of SAD-B in epilepsy, we used siRNA to knock down SAD-B protein and observed behavior after PTZ-induced seizures. We found that SAD-B downregulation attenuated seizure severity and susceptibility in the PTZ-induced epileptic model. Furthermore, we showed that the antiepileptic effect of SAD-B downregulation on PTZ-induced seizure was abolished by CNQX (an AMPA receptor inhibitor), suggesting that SAD-B modulated epileptic seizure by regulating AMPA receptors in the brain. Taken together, these findings suggest that SAD-B may be a potential and novel therapeutic target to limit epileptic seizures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Glaucoma, the second leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). The group II metabotropic glutamate receptor (mGluR II) activation has been linked to RGC survival, however, the mechanism by which it promotes neuronal survival remains poorly defined. In the present work, we show that extracellular application of LY341495, an mGluR II antagonist could increase the RGC firing frequency, suggesting that activation of mGluR II by endogenously released glutamate could modulate RGC excitability. LY354740, an mGluR II agonist, significantly decreased RGC excitability and the reduced presynaptic excitatory inputs and post-synaptic Ca2+-permeable currents mediated the LY354740-induced effects. By using a well-characterized in vivo male Sprague-Dawley rat glaucoma model, we further demonstrate that in the early stage of experimental glaucoma, the expression of mGluR II dimer-formed protein was significantly reduced, and pre-activation of mGluR II by intravitreal injection of LY354740 before establishment of the glaucoma model could effectively reduce excitatory inputs, thereby reversing hyperexcitability induced by elevated intraocular pressure. Furthermore, LY354740 could increase the expression level of brain-derived neurotrophic factor in the glaucomatous retinas, further protecting RGCs. Our study indicates that the abnormal expression of mGluR II may accelerate RGC apoptosis in glaucoma, and demonstrates that mGluR II agonist LY354740 can be used as a novel method to counter RGC apoptosis in glaucoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号