DICKKOPF1

dickkopf1
  • 文章类型: Journal Article
    血管钙化(VC)是动脉粥样硬化(AS)患者心血管死亡率和发病率的重要危险因素,慢性肾病,和糖尿病。Dickkopf1(Dkk1)是一种多功能分泌型糖蛋白,已被开发为新的潜在抗肿瘤靶标。最近,Dkk1与AS发展密切相关。然而,Dkk1在VC中的作用仍然难以捉摸。在这项研究中,我们基于平滑肌特异性Dkk1敲除(Dkk1SMKO)小鼠模型,探讨了Dkk1在VC中的作用和分子机制。我们的数据表明Dkk1表达在钙化条件下降低,Dkk1过表达减轻了高磷酸盐诱导的血管钙化。在体内,平滑肌Dkk1特异性敲除加重小鼠血管钙化。然而,磷脂酶D1(PLD1)过表达部分削弱了Dkk1对血管钙化的保护作用。机械上,Dkk1通过调节自噬体的形成和成熟,促进PLD1的降解,从而减缓血管钙化。总之,我们发现Dkk1可以通过调节PLD1的降解来减轻血管钙化。
    Vascular calcification (VC) is a significant risk factor for cardiovascular mortality and morbidity in patients with atherosclerosis (AS), chronic kidney disease, and diabetes. Dickkopf1 (Dkk1) is a multifunctional secreted glycoprotein that has been explored as a novel potential antitumor target. Recently, Dkk1 was shown to be closely associated with AS development. However, the role of Dkk1 in VC remains elusive. In this study, we explored the role and molecular mechanisms of Dkk1 in VC based on a smooth muscle-specific Dkk1-knockout (Dkk1SMKO) mouse model. Our data indicated that Dkk1 expression was decreased under calcifying conditions and that Dkk1 overexpression alleviated high phosphate-induced vascular calcification. In vivo, smooth muscle Dkk1-specific knockout aggravated vascular calcification in mice. However, phospholipase D1 (PLD1) overexpression partially weakened the protective effect of Dkk1 against vascular calcification. Mechanistically, Dkk1 slowed vascular calcification by promoting the degradation of PLD1 via the regulating autophagosome formation and maturation. In conclusion, we found that Dkk1 could alleviate vascular calcification by regulating the degradation of PLD1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Among all malignancies, lung cancer is the leading cause of cancer-related deaths in China. Bone metastasis is one of the most common complications and one of the most important factors affecting the prognosis of lung cancer patients, which resulting in very poor therapeutic effects. Previously, we have demonstrated that the expression levels of Dickkopf1 (DKK1), a protein involved in cell regulation and proliferation, was dramatically higher in cells that have a tendency to metastasize and invade the bone tissue (SBC-5 cells) compared with cells that do not (SBC-3 cells). Downregulation of DKK1 in SBC-5 cells inhibited cell malignancy in vitro, and the formation of bone metastasis in vivo. However, whether upregulating DKK1 would be sufficient to induce aggressive tumor behavior (proliferation, migration, invasion and metastasis) in SBC-3 cells remained to be investigated. The present study aimed to examine the role of DKK1 in SBC-3 cells, as well as to investigate the SBC-3 ability to metastasize and invade the bone tissue. The results demonstrated that upregulation of DKK1 in SBC-3 cells enhanced cell proliferation, colony formation, cell migration and invasion in vitro, as well as bone metastasis in vivo. These results indicate that DKK1 may be an important regulator in the development of small cell lung cancer (SCLC), and targeting DKK1 may be an effective method for preventing and/or treating skeletal metastases in SCLC cases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A1CF (apobec-1 complementation factor) acts as a component of the apolipoprotein-B messenger RNA editing complex. Previous researches mainly focused on its post-transcriptional cytidine to uridine RNA editing. However, few study reported its role in progression of breast carcinoma cells. Wound healing assay and flow cytometry were applied to detect the migration and apoptosis; western blot, real-time polymerase chain reaction, and dual-luciferase assays were applied to investigate the potential regulation mechanism of A1CF-mediated cell migration and apoptosis. Knockdown of A1CF decreased cell migration and enhanced cell apoptosis in MCF7 cells in vitro. Western blot analysis showed that knockdown of A1CF decreased Dickkopf1 but increased c-Myc and β-catenin expression, and overexpression of A1CF can get opposite results. Knockdown of Dickkopf1 in A1CF-overexpressed cells decreased cell migration and enhanced cell apoptosis compared with A1CF-overexpressed cells. Luciferase-fused 3\' untranslated region of human Dickkopf1 activity was highly upregulated in A1CF-overexpressed MCF7 cells, but this upregulation can be inhibited by mutating conserved binding motifs of Dickkopf1 3\' untranslated region. A1CF played a crucial role in cell migration and survival through affecting 3\' untranslated region of Dickkopf1 to upregulate its expression in MCF7 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Melanocyte stem cells (McSCs) undergo cyclical activation and quiescence together with hair follicle stem cells (HFSCs). This process is strictly controlled by the autonomous and extrinsic signaling environment. However, the modulation of factors important for the activation of McSCs for hair pigmentation remains unclear. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics vital signaling pathways involved in melanocyte growth and melanogenesis in vitro. To investigate whether TPA regulates quiescent McSCs for hair pigmentation, we topically smeared TPA on 7-week-old mouse dorsal skin and found that TPA stimulated hair growth and hair matrix pigmentation. These changes were associated with a significant increase in the number of hair bulb melanocytes. Moreover, in the TPA-treated group, hair bulge McSCs and hair bulb melanoblasts actively proliferated. At the molecular level, nuclear β-catenin, a key factor of Wnt/β-catenin signaling, was highly synthesized in melanocytes and keratinocytes in TPA-induced hair bulbs. Inhibition of Wnt/β-catenin signaling by injecting Dickkopf1 plasmids into TPA-treated skin decreased hair matrix pigmentation and inhibited the proliferation and differentiation of McSCs. Our findings suggest that the topical application of TPA stimulates the proliferation and differentiation of McSCs and their progeny for hair matrix pigmentation by activating Wnt/β-catenin signaling. This might provide a useful experimental model for the study of signals controlling the activation of McSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Dehydroepiandrosterone (DHEA) and its ester form, DHEA-S, are the most abundant steroids in human plasma. Our previous studies showed that DHEA protects against osteoarthritis (OA). The aim of this paper was to explore the possible mechanisms that underlie DHEA-mediated protection against OA. We tested the expression of β-catenin, it was increased significantly in OA. Rabbit cartilage was treated with various concentrations of DHEA in both IL-1β-induced rabbit chondrocytes and in rabbit cartilage from the anterior cruciate ligament transaction-induced OA model. We found DHEA decreased the expression of β-catenin. Then we further activated Wnt/β-catenin signaling by β-catenin transfection and inactivated it by the inhibitor Dickkopf1 in chondrocytes to reveal its role in the pathogenesis of OA. It turns out the protective effect of DHEA was significantly decreased when Wnt/β-catenin signaling was activated, while inactivating Wnt/β-catenin signaling enhanced the effects of DHEA. Therefore, we hypothesize that DHEA probably exerted its chondroprotective effect by regulating Wnt/β-catenin signaling. Our findings demonstrate the critical role of Wnt/β-catenin signaling in DHEA-mediated protection against OA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号