Conserved sequence

保守序列
  • 文章类型: Journal Article
    2019年冠状病毒传染病(COVID-19),由严重急性呼吸道病毒2型(SARS-CoV-2)引起,引发了全球公共卫生危机。作为一种RNA病毒,SARS-CoV-2的高基因突变性对广谱疫苗和抗病毒疗法的开发提出了重大挑战。仍然缺乏直接靶向SARS-CoV-2的特异性治疗剂。具有以序列特异性方式有效抑制靶基因表达的能力,小干扰RNA(siRNA)治疗在抗病毒和其他疾病治疗中显示出显著的潜力。在这项工作中,我们提出了一种针对SARS-CoV-2的多个高度保守区域的高效自组装siRNA纳米颗粒。首先筛选靶向病毒保守区的siRNA序列,并通过其热力学特征进行评估。脱靶效应,和二级结构毒性。然后设计包括siRNA序列的RNA基序并自组装成siRNA纳米颗粒。这些siRNA纳米颗粒表现出显著的均匀性和稳定性,并通过细胞内吞途径有效地直接进入细胞。此外,这些纳米颗粒有效抑制SARS-CoV-2的复制,与游离siRNA相比表现出优异的抑制作用。这些结果表明,这些靶向SARS-CoV-2高度保守区域的自组装siRNA纳米颗粒代表了治疗感染的高效抗病毒候选物。并有望有效对抗当前和未来的病毒变体。
    Coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory virus type 2 (SARS-CoV-2), has caused a global public health crisis. As an RNA virus, the high gene mutability of SARS-CoV-2 poses significant challenges to the development of broad-spectrum vaccines and antiviral therapeutics. There remains a lack of specific therapeutics directly targeting SARS-CoV-2. With the ability to efficiently inhibit the expression of target genes in a sequence-specific way, small interfering RNA (siRNA) therapy has exhibited significant potential in antiviral and other disease treatments. In this work, we presented a highly effective self-assembled siRNA nanoparticle targeting multiple highly conserved regions of SARS-CoV-2. The siRNA sequences targeting viral conserved regions were first screened and evaluated by their thermodynamic features, off-target effects, and secondary structure toxicities. RNA motifs including siRNA sequences were then designed and self-assembled into siRNA nanoparticles. These siRNA nanoparticles demonstrated remarkable uniformity and stability and efficiently entered cells directly through cellular endocytic pathways. Moreover, these nanoparticles effectively inhibited the replication of SARS-CoV-2, exhibiting a superior inhibitory effect compared to free siRNA. These results demonstrated that these self-assembled siRNA nanoparticles targeting highly conserved regions of SARS-CoV-2 represent highly effective antiviral candidates for the treatment of infections, and are promisingly effective against current and future viral variants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酶在各种工业生产和药物开发中起着至关重要的作用,作为众多生化反应的催化剂。确定酶的最佳催化温度(Topt)对于优化反应条件至关重要。提高催化效率,加快工业进程。然而,由于实验确定的Topt数据的可用性有限,以及现有计算方法在预测Topt时的准确性不足,迫切需要一种计算方法来准确预测酶的Topt值。在这项研究中,使用磷酸酶(EC3.1.3。X)作为一个例子,我们构建了一个机器学习模型,利用氨基酸频率和蛋白质分子量信息作为特征,并采用K-最近邻回归算法预测酶的Topt.通常,在进行酶热稳定性工程时,研究人员倾向于不修饰保守的氨基酸。因此,我们利用这个机器学习模型来预测去除保守氨基酸后磷酸酶序列的Topt。我们发现,与基于完整序列的模型相比,预测模型的平均决定系数(R2)值从0.599增加到0.755。随后,对10种磷酸酶的最佳催化温度未确定的实验验证表明,大多数磷酸酶基于不含保守氨基酸的序列的预测值更接近实验最佳催化温度值。本研究为快速筛选适合工业条件的酶奠定了基础。
    Enzymes play a crucial role in various industrial production and pharmaceutical developments, serving as catalysts for numerous biochemical reactions. Determining the optimal catalytic temperature (Topt) of enzymes is crucial for optimizing reaction conditions, enhancing catalytic efficiency, and accelerating the industrial processes. However, due to the limited availability of experimentally determined Topt data and the insufficient accuracy of existing computational methods in predicting Topt, there is an urgent need for a computational approach to predict the Topt values of enzymes accurately. In this study, using phosphatase (EC 3.1.3.X) as an example, we constructed a machine learning model utilizing amino acid frequency and protein molecular weight information as features and employing the K-nearest neighbors regression algorithm to predict the Topt of enzymes. Usually, when conducting engineering for enzyme thermostability, researchers tend not to modify conserved amino acids. Therefore, we utilized this machine learning model to predict the Topt of phosphatase sequences after removing conserved amino acids. We found that the predictive model\'s mean coefficient of determination (R2) value increased from 0.599 to 0.755 compared to the model based on the complete sequences. Subsequently, experimental validation on 10 phosphatase enzymes with undetermined optimal catalytic temperatures shows that the predicted values of most phosphatase enzymes based on the sequence without conservative amino acids are closer to the experimental optimal catalytic temperature values. This study lays the foundation for the rapid selection of enzymes suitable for industrial conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物模式识别受体感知微生物相关分子模式以激活免疫信号1,2。模式识别受体激酶CERK1的激活对免疫至关重要,但是在没有病原体的情况下严格抑制受体激酶对于预防自身免疫至关重要3,4.在这里,我们发现U盒泛素E3连接酶OsCIE1作为分子制动器抑制水稻中的OsCERK1。在稳态期间,OsCIE1泛素化OsCERK1,降低其激酶活性。在微生物相关分子模式甲壳素的存在下,活性OsCERK1磷酸化OsCIE1并阻断其E3连接酶活性,从而释放刹车和提高免疫力。OsCIE1的U-盒内丝氨酸的磷酸化阻止了其与E2泛素缀合酶的相互作用,并充当磷酸化开关。该磷酸化位点在从植物到动物的E3连接酶中是保守的。我们的工作确定了一种配体释放的制动,使动态免疫调节。
    Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CUL3-RINGE3泛素连接酶(CRL3s)在响应细胞外营养和应激刺激中起重要作用。CRL3s的泛素连接酶功能通过二聚化被激活。然而,如何以及为什么这样的二聚体组装需要其连接酶活性仍然难以捉摸。这里,我们报告了二聚体CRL3KLHL22复合物的cryo-EM结构,并揭示了CUL3中保守的N末端基序,该基序有助于CRL3KLHL22的二聚体组装和E3连接酶活性。我们表明,CUL3N末端基序的缺失会损害CRL3KLHL22和其他几种CRL3的二聚体组装和E3连接酶活性。此外,我们发现CRL3KLHL22的二聚体组装动力学产生了一个可变的泛素化区,可能促进底物识别和泛素化。这些发现表明,CUL3N末端基序参与了组装过程,并提供了对CRL3的组装和激活的见解。
    The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    B盒蛋白(BBX)编码调节植物昼夜节律和早期光形态发生的锌指转录因子家族。双B盒(DBB)家族属于B盒家族的类,它包含两个保守的B-box结构域,并且缺少一个CCT(CO,CO样和TOC1)图案。在这项研究中,身份,分类,结构,保守的图案,染色体位置,顺式元素,重复事件,并分析了木本模型植物毛果杨中PtrDBB基因的表达谱。这里,确定了12个PtrDBB基因(PtrDBB1-PtrDBB12),并将其分为四个不同的组,它们都均匀分布在十七个杨树染色体中的八个染色体中。毛果假单胞菌和其他两个物种的DBB家族基因的共线性分析(Z。mays和A.thaliana)表明已鉴定出分段重复基因对和高水平保守性。对重复事件的分析证明了对DBB基因进化模式的洞察力。先前发表的转录组数据表明,PtrDBB基因在不同阶段的各种组织中表现出不同的表达模式。此外,据推测,几种PtrDBB参与了对干旱胁迫的响应,亮/暗,ABA和MeJA治疗,这意味着它们可能在非生物胁迫和植物激素反应中起作用。总之,我们的研究结果有助于进一步了解DBB家族,并为毛果假单胞菌PtrDBB基因的潜在功能研究提供参考。
    The B-box proteins (BBXs) encode a family of zinc-finger transcription factors that regulate the plant circadian rhythm and early light morphogenesis. The double B-box (DBB) family is in the class of the B-box family, which contains two conserved B-box domains and lacks a CCT (CO, CO-like and TOC1) motif. In this study, the identity, classification, structures, conserved motifs, chromosomal location, cis elements, duplication events, and expression profiles of the PtrDBB genes were analyzed in the woody model plant Populus trichocarpa. Here, 12 PtrDBB genes (PtrDBB1-PtrDBB12) were identified and classified into four distinct groups, and all of them were homogeneously spread among eight out of seventeen poplar chromosomes. The collinearity analysis of the DBB family genes from P. trichocarpa and two other species (Z. mays and A. thaliana) indicated that segmental duplication gene pairs and high-level conservation were identified. The analysis of duplication events demonstrates an insight into the evolutionary patterns of DBB genes. The previously published transcriptome data showed that PtrDBB genes represented distinct expression patterns in various tissues at different stages. In addition, it was speculated that several PtrDBBs are involved in the responsive to drought stress, light/dark, and ABA and MeJA treatments, which implied that they might function in abiotic stress and phytohormone responses. In summary, our results contribute to the further understanding of the DBB family and provide a reference for potential functional studies of PtrDBB genes in P. trichocarpa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由SARS-CoV-2引起的COVID-19大流行强调了可靠的检测方法对疾病控制和监测的重要性。通过合理筛选抗原优化检测抗体将提高基于抗体的检测方法如胶体金免疫层析的灵敏度和特异性。在这项研究中,我们使用生物信息学和结构生物学分析筛选了SARS-CoV-2的N蛋白中具有保守序列的三种肽抗原。制备特异性识别这些肽的抗体。与抗体具有最高结合亲和力的肽的表位位于N蛋白的表面,这有利于抗体结合。使用可以识别该表位的最佳抗体,我们开发了胶体金免疫层析,可以检测到10pg/mL的N蛋白。重要的是,该抗体能有效识别N蛋白中的天然肽抗原和突变肽抗原,显示了在SARS-CoV-2大规模人群检测中应用的可行性。本研究为合理筛选高灵敏度的检测抗体提供了具有参考意义的平台,特异性,SARS-CoV-2和其他病原体的可靠性。
    The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物细胞壁是一种动态结构,在发育中起着至关重要的作用,但是调节细胞壁形成的机制仍然知之甚少。我们证明了两种转录因子,Slerf.H5和SlERF。H7,以添加剂的方式控制细胞壁形成和番茄果实硬度。SIERF的淘汰赛。H5,Slerf。H7,或这两个基因降低细胞壁厚度,坚定,和早期发育过程中水果中的纤维素含量,尤其是在双淘汰赛中。过表达任一基因都会导致细胞壁较厚,果实硬度更高,果实中纤维素水平升高,但赤霉素含量较低的植物严重矮化。我们进一步确定了SIERF。H5和SlERF。H7激活纤维素生物合成基因SlCESA3,但抑制赤霉素生物合成基因GA20ox1。此外,我们在这些ERF中确定了一个保守的LPL基序,负责其作为转录激活因子和抑制因子的活动,深入了解双功能转录因子如何调节不同的发育过程。
    The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可变剪接(AS)产生多种RNA同种型,并增加转录组和蛋白质组的复杂性。然而,目前尚不清楚RNA结构如何促进AS调节。这里,我们系统地搜索具有可变剪接内含子中隐藏分支位点(BS)的二级结构的转录组,并从六个生物体中预测数千个,其中许多是进化保守的。有趣的是,在动物SF3B3基因中发现了具有隐藏BS的高度保守的茎环结构,并与下游毒物外显子(PE)共定位。这种结构的不稳定允许增加BS的使用,并导致在人和果蝇细胞中增强的PE包含。导致SF3B3表达降低。该结构使用细胞内SHAPE-MaP测定进行实验验证。通过28种RNA结合蛋白的RNA干扰筛选,我们发现这种茎环结构对U2因子敏感。此外,我们发现SF3B3还通过增强ERCC6/CSB与被阻滞的RNA聚合酶II之间的相互作用来促进DNA修复并保护基因组稳定性.重要的是,果蝇和具有通过基因组编辑突变的二级结构的人类细胞在体内表现出改变的DNA修复。本研究为PE的AS调控提供了新的共同机制,揭示了SF3B3在DNA修复中的生理功能。
    Alternative splicing (AS) generates multiple RNA isoforms and increases the complexities of transcriptomes and proteomes. However, it remains unclear how RNA structures contribute to AS regulation. Here, we systematically search transcriptomes for secondary structures with concealed branch sites (BSs) in the alternatively spliced introns and predict thousands of them from six organisms, of which many are evolutionarily conserved. Intriguingly, a highly conserved stem-loop structure with concealed BSs is found in animal SF3B3 genes and colocalizes with a downstream poison exon (PE). Destabilization of this structure allows increased usage of the BSs and results in enhanced PE inclusion in human and Drosophila cells, leading to decreased expression of SF3B3. This structure is experimentally validated using an in-cell SHAPE-MaP assay. Through RNA interference screens of 28 RNA-binding proteins, we find that this stem-loop structure is sensitive to U2 factors. Furthermore, we find that SF3B3 also facilitates DNA repair and protects genome stability by enhancing interaction between ERCC6/CSB and arrested RNA polymerase II. Importantly, both Drosophila and human cells with the secondary structure mutated by genome editing exhibit altered DNA repair in vivo. This study provides a novel and common mechanism for AS regulation of PEs and reveals a physiological function of SF3B3 in DNA repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号