CDT

CDT
  • 文章类型: Journal Article
    一种可注射的水凝胶敷料,Zr/Fc-MOF@CuO2@FH,通过将酸触发的化学动力学处理(CDT)与低温光热处理(LT-PTT)相结合来构建,以有效消除细菌而不伤害周围的正常组织。Zr/Fc-MOF充当光热试剂和纳米酶以产生活性氧(ROS)。CuO2纳米层可以被细菌感染的酸性微环境分解,释放出Cu2和H2O2,这不仅诱导了类Fenton反应,而且增强了Zr/Fc-MOF的催化能力。产生的热量增加了ROS的产生,导致在低温下高效的细菌消除。准确地说,可注射水凝胶敷料可以匹配不规则的伤口部位,这缩短了散热和ROS扩散到细菌的距离,从而提高灭菌效果和降低非特异性全身毒性。体外和体内实验均验证了耐药耐甲氧西林金黄色葡萄球菌(MRSA)和卡那霉素耐药大肠杆菌(KREC)的优势杀菌效率,在临床治疗中具有巨大的应用潜力。
    An injectable hydrogel dressing, Zr/Fc-MOF@CuO2@FH, was constructed by combing acid-triggered chemodynamic treatment (CDT) with low-temperature photothermal treatment (LT-PTT) to effectively eliminate bacteria without harming the surrounding normal tissues. The Zr/Fc-MOF acts as both photothermal reagent and nanozyme to generate reactive oxygen species (ROS). The CuO2 nanolayer can be decomposed by the acidic microenvironment of the bacterial infection to release Cu2+ and H2O2, which not only induces Fenton-like reaction but also enhances the catalytic capability of the Zr/Fc-MOF. The generated heat augments ROS production, resulting in highly efficient bacterial elimination at low temperature. Precisely, injectable hydrogel dressing can match irregular wound sites, which shortens the distance of heat dissipation and ROS diffusion to bacteria, thus improving sterilization efficacy and decreasing non-specific systemic toxicity. Both in vitro and in vivo experiments validated the predominant sterilization efficiency of drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC), presenting great potential for application in clinical therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在各种癌症的治疗中,光动力疗法(PDT)作为一种有效的治疗方式已被广泛研究。作为传统化疗的潜在替代方案,由于光敏剂的低活性氧(ROS)产率,PDT受到限制。在这里,开发了包含介孔Fe3O4@TiO2微球的纳米平台,用于近红外(NIR)-光增强化学动力学疗法(CDT)和PDT。二氧化钛(TiO2)已被证明是一种非常有效的PDT剂;然而,缺氧肿瘤微环境部分影响其体内PDT疗效。一种类似过氧化物酶的酶,Fe3O4催化细胞质中H2O2的分解以产生O2,帮助克服肿瘤缺氧并增加响应于PDT的ROS产生。此外,Fe3O4中的Fe2可以催化H2O2分解,在肿瘤细胞内产生细胞毒性羟基自由基,这将导致肿瘤CDT。Fe3O4@TiO2的光子热疗不仅可以直接损伤肿瘤,而且可以提高Fe3O4的CDT效率。通过成功装载化疗药物DOX,癌症杀伤效力已被最大化,使用近红外激发和轻微酸化可以有效释放。此外,纳米平台具有高饱和磁化强度(20emu/g),使其适用于磁瞄准。体外结果表明,Fe3O4@TiO2/DOX纳米平台与CDT/PDT/PTT/化疗联合应用具有良好的生物相容性以及对肿瘤的协同作用。
    In the treatment of various cancers, photodynamic therapy (PDT) has been extensively studied as an effective therapeutic modality. As a potential alternative to conventional chemotherapy, PDT has been limited due to the low Reactive Oxygen Species (ROS) yield of photosensitisers. Herein, a nanoplatform containing mesoporous Fe3O4@TiO2 microspheres was developed for near-infrared (NIR)-light-enhanced chemodynamical therapy (CDT) and PDT. Titanium dioxide (TiO2) has been shown to be a very effective PDT agent; however, the hypoxic tumour microenvironment partly affects its in vivo PDT efficacy. A peroxidase-like enzyme, Fe3O4, catalyses the decomposition of H2O2 in the cytoplasm to produce O2, helping overcome tumour hypoxia and increase ROS production in response to PDT. Moreover, Fe2+ in Fe3O4 could catalyse H2O2 decomposition to produce cytotoxic hydroxyl radicals within tumour cells, which would result in tumour CDT. The photonic hyperthermia of Fe3O4@TiO2 could not only directly damage the tumour but also improve the efficiency of CDT from Fe3O4. Cancer-killing effectiveness has been maximised by successfully loading the chemotherapeutic drug DOX, which can be released efficiently using NIR excitation and slight acidification. Moreover, the nanoplatform has high saturation magnetisation (20 emu/g), making it suitable for magnetic targeting. The in vitro results show that the Fe3O4@TiO2/DOX nanoplatforms exhibited good biocompatibility as well as synergetic effects against tumours in combination with CDT/PDT/PTT/chemotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化学动力学疗法(CDT)是一种新兴的治疗策略,通过催化活性氧(ROS)的产生来抑制肿瘤的生长。如羟基自由基(•OH),使用特定的纳米材料。在这里,我们开发了一类新的铁基纳米材料,即,铁基硼化物(FeB),利用硼簇(closo-[B12H12]2-)和有机配体的超离液效应,其次是高温煅烧。实验数据和理论计算表明,FeB纳米颗粒表现出类芬顿效应,有效地将过氧化氢分解为·OH,从而增加ROS的浓度。FeB纳米材料表现出优异的催化性能,有效地产生ROS,并在细胞实验和动物模型中发挥显著的抗肿瘤作用。因此,FeB纳米材料在肿瘤治疗中具有巨大的应用潜力,并为开发新的有效的癌症治疗策略提供了新的见解。
    Chemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e., iron-based borides (FeB), using the superchaotropic effect of a boron cluster (closo-[B12H12]2-) and organic ligands, followed by high-temperature calcination. Experimental data and theoretical calculations revealed that FeB nanoparticles exhibit a Fenton-like effect, efficiently decomposing hydrogen peroxide into •OH and thus increasing the concentration of ROS. FeB nanomaterials demonstrate excellent catalytic performance, efficiently generate ROS, and exert significant antitumor effects in cell experiments and animal models. Therefore, FeB nanomaterials have considerable potential for application in tumor treatment and offer new insights for the development of novel and efficient cancer therapy strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属-酚醛网络(MPNs)是一种由金属离子和多酚自组装而成的新型纳米材料,近几十年来得到了迅速发展。他们已经被广泛调查,在生物医学领域,因为他们的环境友好,高质量,良好的生物粘附性,和生物相容性,在肿瘤治疗中起着至关重要的作用。作为MPNs家族最常见的子类,铁基MPN最常用于化学动力疗法(CDT)和光疗(PTT)。它们通常被用作纳米涂层来封装药物,以及良好的Fenton试剂和光敏剂,以大大提高肿瘤的治疗效率。在这次审查中,首先总结了制备各种类型铁基MPNs的策略。我们强调了铁基MPNs在不同种类的多酚配体下在肿瘤治疗中的应用优势。最后,Fe基MPNs当前存在的一些问题和挑战,以及生物医学应用的未来前景,正在讨论。
    Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    简介:肺癌是癌症相关死亡的最常见原因,目前的治疗缺乏足够的特异性和有效性。这项研究开发了一种可注射的热敏水凝胶,该凝胶带有中空的硫化铜纳米颗粒和β-拉帕科恩(Lap)(CLH),用于肺部肿瘤治疗。方法:水凝胶包裹的CLH系统可以利用光热效应远程控制铜离子(Cu2)和药物的释放,用于肿瘤治疗中的非侵入性控释药物递送。释放的Cu2+消耗TME中过表达的GSH,并且生成的Cu+进一步利用TME特性来引发纳米催化反应以产生高毒性羟基自由基。此外,在过表达烟酰胺腺嘌呤二核苷酸(磷酸)的癌细胞中:醌氧化还原酶1(NQO1),lap可以通过无用的氧化还原循环催化过氧化氢(H2O2)的产生。H2O2通过类Fenton反应进一步转化为高毒性的羟基自由基,导致TME中活性氧的爆发,这进一步增强了趋化因子的治疗效果。结果:对皮下A549肺肿瘤模型小鼠中的抗肿瘤功效的分析显示肿瘤生长的显著延迟并且未检测到全身毒性。讨论:总之,我们已经建立了一个CLH纳米药物平台,通过联合光热/化学动力学疗法(CDT)治疗和自供应H2O2实现级联催化,实现有效的肺肿瘤治疗,导致氧化应激的爆炸性放大。
    Introduction: Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. Methods: The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu2+) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy. The released Cu2+ consumes the overexpressed GSH in TME and the generated Cu+ further exploits the TME characteristics to initiate nanocatalytic reactions for generating highly toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles. H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like reaction, leading to a burst of reactive oxygen species in TME, which further enhances the therapeutic effect of chemokines. Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor model mice showed a significant delay in tumor growth and no systemic toxicity was detected. Discussion: In conclusion, we have established a CLH nanodrug platform that enables efficient lung tumor therapy through combined photothermal/chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve cascade catalysis, leading to explosive amplification of oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物膜已成为慢性感染的基本问题之一,虽然传统疗法通常无法从生物膜中去除静止(持久)细胞,导致各种植入物相关或医院感染。最近,噬菌体(噬菌体)疗法在研究和临床试验中得到了重新发展。然而,单独的噬菌体疗法表现出许多内在缺陷,包括生物膜穿透力差,静止细胞的不完全清除,等。在这项研究中,通过轻度生物矿化构建了噬菌体-氯蛋白e6(Ce6)-二氧化锰纳米复合材料(PCM)。结果表明,PCM既具有宿主细菌靶向的活性,又具有有效的Ce6穿透生物膜的活性。辅助近红外辐射,在生物膜内触发了强大的活性氧(ROS)。在弱酸性和富含GSH的感染生态位中,PCM被降解成超小纳米片,赋予PCM适度的光热治疗(PTT)效果和相当大的Mn2+释放,从而在原位发挥强大的化学动力疗法(CDT)作用。体内应用表明,PCM应用和NIR照射的组合显着降低了病原体的负荷,激活的先天和适应性免疫,促进新胶原重排,减少瘢痕组织的形成。我们的研究可能为细菌治疗铺平道路,生物膜相关感染,和其他由细菌引起的疾病。
    Biofilms have become one of the fundamental issues for chronic infections, while traditional therapies are often ineffective in removing quiescent (persister) cells from biofilms, resulting in a variety of implant-related or nosocomial infections. Recently, bacteriophage (phage) therapy has reflourished in research and clinical trials. However, phage therapy alone manifested many intrinsic defects, including poor biofilm penetration, incomplete clearance of quiescent cells, etc. In this study, a phage-Chlorin e6 (Ce6)-manganese dioxide nanocomposite (PCM) was constructed by mild biomineralization. The results demonstrated that PCM contained both the vigorous activities of host bacterial targeting and efficient delivery of Ce6 to penetrate the biofilm. Assisted with NIR irradiation, robust reactive oxygen species (ROS) was triggered within the biofilm. In the weak acidic and GSH-rich infection niche, PCM was degraded into ultra-small nanosheets, endowing PCM with moderate photothermal therapy (PTT) effects and considerable Mn2+ release, thus exerting strong chemodynamic therapy (CDT) effects in situ. In vivo application demonstrated that the combination of PCM application and NIR irradiation strikingly reduced the pathogen loading, activated innate and adaptive immunity, promoted neocollagen rearrangement, and attenuated cicatricial tissue formation. Our research may pave a new way for bacterial treatment, biofilm-related infections, and other diseases caused by bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化疗,作为缓解肿瘤进展的主要策略之一,对三阴性乳腺癌(TNBC)胸壁转移的影响较弱。用于化学动力疗法(CDT)和光热疗法(PTT)的近红外(NIR)光响应纳米材料的开发是一个有前途的平台,但在生物医学中仍然具有挑战性。这项研究报道了通过CDT和PTT针对TNBC的过氧化物酶模拟纳米酶(Fe-N-CSAzyme)。Fe-N-CSAzyme通过将H2O2分解为羟基自由基(•OH)而产生活性氧(ROS),并在808nm激光照射下诱导光热转化。有了这些生物学特性,在低剂量的纳米试剂和中等的NIR激光功率密度下,获得的Fe-N-CSAzymes在体外和体内均显示出增强的细胞毒性和对癌细胞增殖的抑制作用。此外,Fe-N-C纳米剂具有出色的ROS生成,可在肿瘤细胞中提高糖酵解的代谢重编程。体内实验,当与PTT结合使用时,通过消除肿瘤微环境中的M-MDSC发现了增强的抗肿瘤作用。Fe-N-C酶可以作为一种新的协同CDT和PTT纳米剂,同时重新编程肿瘤代谢和肿瘤微环境。基于单个纳米系统的使用,它将为TNBC胸壁转移的化学动力学/光热联合癌症治疗提供前景。
    Chemotherapy, as one main strategy to relieve tumor progression, has a weak effect on triple-negative breast cancer (TNBC) chest wall metastasis. The development of near-infrared (NIR) light-responsive nanomaterials for chemodynamic therapy (CDT) and photothermal therapy (PTT) is a promising platform but still challenging in biomedicine. This study reports a peroxidase mimicking nanozyme (Fe-N-C SAzyme) against TNBC by CDT and PTT. Fe-N-C SAzyme generated reactive oxygen species (ROS) by decomposing H2O2 into hydroxyl radicals (•OH) and also induced light-to-heat conversion under the exposure of 808 nm laser irradiation. With these biological characteristics, the obtained Fe-N-C SAzymes displayed enhanced cell cytotoxicity and inhibition of cancer cell proliferation both in vitro and in vivo at a low dose of nanoagent and a moderate NIR laser power density. Besides, Fe-N-C nanoagent with its excellent ROS generation brought metabolic reprogramming of elevated glycolysis in tumor cells. In vivo experiments, when combined with PTT, the enhanced antitumor effect was found by the elimination of M-MDSC in tumor microenvironment. Fe-N-C SAzymes can serve as a new synergistic CDT and PTT nanoagent to simultaneously reprogram tumor metabolism and tumor microenvironment. It will provide prospects for chemodynamic/photothermal combined cancer therapy for TNBC chest wall metastasis based on the use of a single nanosystem.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于纳米酶的化学动力学疗法(CDT)在治疗细菌感染方面显示出巨大的潜力。然而,CDT抗菌功效受到纳米酶的催化活性或感染微环境如过氧化氢(H2O2)不足和过表达的谷胱甘肽(GSH)的严重限制。在这里,通过简单地通过共价Cu-S键将超小的CuO2纳米点装饰在绣球花状MoS2纳米载体的层状MoS2血小板上,可以合理地构建通用的杂合纳米酶(MoS2/CuO2)。MoS2/CuO2纳米酶表现出过氧化物酶模拟活性,可将修饰的CuO2的酸触发分解产生的H2O2催化转化为羟基自由基(•OH)。同时,MoS2/CuO2可以通过多价过渡金属离子(Cu2和Mo6)介导的氧化还原反应消耗在感染部位过表达的GSH,以增强CDT。更重要的是,MoS2载体可以通过基于Mo4/Mo6氧化还原对的共催化反应促进Cu2转化为Cu,并提供光子热疗(PTT)以增强过氧化物酶模拟活性。开发的MoS2/CuO2纳米酶具有理想的催化性能,以及在体外和体内显著提高的抗菌效率。一起来看,这项研究提出了一种协同的多重增强策略,以成功构建用于强化体内PTT/CDT双模式抗感染治疗的多功能杂合纳米酶。重要性声明:化学动力学疗法(CDT)在治疗细菌感染方面显示出巨大的潜力,而其治疗效率受到感染微环境的严重限制,例如过氧化氢(H2O2)不足和谷胱甘肽(GSH)过表达。这里,我们合理地构建了一种具有过氧化物酶样活性的杂合纳米酶(MoS2/CuO2),可以通过调节局部微环境来增强CDT,也就是说,同时自我供应H2O2和消耗GSH。重要的是,MoS2载体可以通过Mo4/Mo6氧化还原对促进Cu2转化为Cu,并提供光子热疗(PTT)以增强过氧化物酶模拟活性。开发的MoS2/CuO2在体外和体内均显示出期望的PTT/CDT双模式抗菌功效。本研究提出了一种具有多种增强作用的多功能杂合纳米酶,用于体内强化抗感染治疗。
    Nanozyme-based chemodynamic therapy (CDT) has shown tremendous potential in the treatment of bacterial infections. However, the CDT antibacterial efficacy is severely limited by the catalytic activity of nanozymes or the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Herein, a versatile hybrid nanozyme (MoS2/CuO2) is rationally constructed by simply decorating ultrasmall CuO2 nanodots onto lamellar MoS2 platelets of hydrangea-like MoS2 nanocarrier via a covalent Cu-S bond. The MoS2/CuO2 nanozyme exhibits the peroxidase-mimic activity for catalytically converting H2O2 produced by acid-triggered decomposition of the decorated CuO2 into hydroxyl radical (•OH). Meanwhile, the MoS2/CuO2 can consume GSH overexpressed in the infection sites via redox reaction mediated by polyvalent transition metal ions (Cu2+ and Mo6+) for enhanced CDT. More importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by a co-catalytic reaction based on the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 nanozymes possesses a desirable catalytic property, as well as a remarkably improved antibacterial efficiency both in vitro and in vivo. Taken together, this study proposes a synergetic multiple enhancement strategy to successfully construct the versatile hybrid nanozymes for intensive in vivo PTT/CDT dual-mode anti-infective therapy. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) has shown great potentialities in the treatment of bacterial infections, while its therapeutic efficiency is severely limited by the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Here, we rationally construct a hybrid nanozyme (MoS2/CuO2) with peroxidase-like activity that can enhance CDT by regulating local microenvironments, that is, simultaneously self-supplying H2O2 and consuming GSH. Importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 shows desirable PTT/CDT dual-mode antibacterial efficacy both in vitro and in vivo. This study proposes a versatile hybrid nanozyme with multiple enhancement effects for intensive in vivo anti-infective therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于缺氧肿瘤微环境中丰富的乳酸底物,原位乳酸氧化酶(LOx)催化在将氧气还原为H2O2方面非常有效。动态治疗,包括化学动力学治疗(CDT),光动力疗法(PDT),和酶动态疗法(EDT),可以通过肿瘤区域H2O2的歧化或级联生物催化反应产生包括·OH和1O2在内的活性氧(ROS)。这里,我们通过将LOx和抗糖酵解药物Mito-LND整合到涂有CaCO3的Fe3O4/g-C3N4纳米颗粒(表示为FGLMC)中,证明了基于ROS的肿瘤治疗。LOx可以催化内源性乳酸产生H2O2,H2O2通过Fenton反应诱导的CDT和光触发的PDT分解为·OH和1O2。同时,释放的Mito-LND通过切断乳酸来源和增加线粒体中的ROS生成来进一步改善CDT和PDT,从而有助于代谢治疗。结果表明,FGLMC纳米平台可以多面性地提高ROS的产生,并对癌细胞造成致命的损伤,导致有效的癌症抑制。这种多向ROS调节策略对不同类型的肿瘤具有治疗潜力。
    The in situ lactate oxidase (LOx) catalysis is highly efficient in reducing oxygen to H2O2 due to the abundant lactate substrate in the hypoxia tumor microenvironment. Dynamic therapy, including chemodynamic therapy (CDT), photodynamic therapy (PDT), and enzyme dynamic therapy (EDT), could generate reactive oxygen species (ROS) including ·OH and 1O2 through the disproportionate or cascade biocatalytic reaction of H2O2 in the tumor region. Here, we demonstrate a ROS-based tumor therapy by integrating LOx and the antiglycolytic drug Mito-LND into Fe3O4/g-C3N4 nanoparticles coated with CaCO3 (denoted as FGLMC). The LOx can catalyze endogenous lactate to produce H2O2, which decomposes cascades into ·OH and 1O2 through Fenton reaction-induced CDT and photo-triggered PDT. Meanwhile, the released Mito-LND contributes to metabolic therapy by cutting off the source of lactate and increasing ROS generation in mitochondria for further improvement in CDT and PDT. The results showed that the FGLMC nanoplatform can multifacetedly elevate ROS generation and cause fatal damage to cancer cells, leading to effective cancer suppression. This multidirectional ROS regulation strategy has therapeutic potential for different types of tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肿瘤治疗的单一疗法总是对反应条件的限制和不可避免的多药耐药施加有限的能力,严重影响临床治疗效果。在这里,基于化学动力学疗法(CDT)和光热疗法(PTT)的联合治疗纳米系统(MP@PI)被构建用于触发铁凋亡/焦凋亡,它是用聚多巴胺(PDA)和IR820修饰以负载胡椒长胺(PL)的金属有机骨架(MOF)。MOF和PL分别作为铁源和H2O2源,进行化学动力学治疗(CDT)以引起铁死亡。同时铁源诱导肿瘤细胞的焦亡。PDA不仅对释放PL有pH响应,而且CDT辅助,由于PDA消耗谷胱甘肽以减少谷胱甘肽过氧化物4的表达。光敏剂IR820在近红外光下发挥光热效应,并进一步促进铁凋亡/焦凋亡。作为补充,MP@PI纳米平台在体内引起免疫反应并进一步增强抗肿瘤作用。总的来说,MP@PI是一种通过CDT和PTT结合的有前途的癌症治疗策略,诱导铁凋亡和焦亡。
    Single therapy for tumor therapy always exerts limited ability for the constraints on the reaction condition and the unavoidable multidrug resistance, which seriously influences the therapy effect in the clinic. Herein, a combination treatment nanosystem (MP@PI) based on chemodynamic therapy (CDT) and photothermal therapy (PTT) is constructed for triggering ferroptosis/pyroptosis, which is the metal-organic framework (MOF) modified with polydopamine (PDA) and IR820 to loaded with piperlongumine (PL). The MOF and PL respectively served as the iron source and H2O2 source, performing chemodynamic therapy (CDT) for eliciting ferroptosis. Meanwhile the iron source induces pyroptosis in tumor cells. PDA is not only pH responsive to release PL but also CDT-assisted which due to PDA consumes the glutathione to decrease the expression of glutathione peroxide 4. The photosensitizer IR820 exerts photothermal effects under near-infrared light and further facilitates the ferroptosis/pyroptosis. In addation, the MP@PI nanoplatform evokes the immune response in vivo and enhances the antitumor effects further. Overall, MP@PI is a kind of promising cancer therapy strategy through CDT and PTT combination, inducing ferroptosis and pyroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号