CDH11

CDH11
  • 文章类型: Journal Article
    本研究旨在通过分析通过小切口微透镜提取(SMILE)获得的人角膜基质微透镜样品的蛋白质组,探讨高度近视的潜在病理生理学。共有32名接受SMILE的患者被纳入研究。对角膜基质微透镜样品进行无标记定量蛋白质组学分析,同样代表高度近视(n=10)和低近视(n=10)组。使用计算机模拟工具分析鉴定和异形的微透镜蛋白质组,以探索差异表达蛋白质(DEP)的生物学特征。此外,采用LASSO回归和随机森林模型鉴定与高度近视病理生理相关的关键蛋白。发现DEP与免疫激活密切相关,细胞外基质,以及根据基因本体论分析的细胞粘附相关通路。具体来说,COL1A1的表达降低和CDH11的表达增加与高度近视的发病有关,并通过蛋白质印迹(n=6)和定量实时聚合酶链反应(n=6)进行了验证。总的来说,这项研究提供了证据,根据通过SMILE获得的人角膜基质微透镜的比较蛋白质组学分析,COL1A1和CDH11可能有助于高度近视的病理生理学.
    This study aimed to investigate the underlying pathophysiology of high myopia by analyzing the proteome of human corneal stromal lenticule samples obtained through small incision lenticule extraction (SMILE). A total of thirty-two patients who underwent SMILE were included in the study. Label-free quantitative proteomic analysis was performed on corneal stromal lenticule samples, equally representing high myopia (n = 10) and low myopia (n = 10) groups. The identified and profiled lenticule proteomes were analyzed using in silico tools to explore biological characteristics of differentially expressed proteins (DEPs). Additionally, LASSO regression and random forest model were employed to identify key proteins associated with the pathophysiology of high myopia. The DEPs were found to be closely linked to immune activation, extracellular matrix, and cell adhesion-related pathways according to gene ontology analysis. Specifically, decreased expression of COL1A1 and increased expression of CDH11 were associated with the pathogenesis of high myopia and validated by western blotting (n = 6) and quantitative real time polymerase chain reaction (n = 6). Overall, this study provides evidence that COL1A1 and CDH11 may contribute to the pathophysiology of high myopia based on comparative proteomic profiling of human corneal stromal lenticules obtained through SMILE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as \"matched-gene co-expression analysis\" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UNASSIGNED: Exosome-encapsulated microRNAs (miRNAs) are being considered as either diagnostic or predictive markers in different types of diseases. Here, we discussed the effects of exosome-encapsulated miR-127-3p from bone marrow-derived mesenchymal stem cells (BM-MSCs) on osteoarthritis (OA).
    UNASSIGNED: BM-MSCs and primary chondrocytes were isolated from Sprague Dawley rats. IL-1β was utilized to treat chondrocytes to mimic an OA in vitro model, and exosomes extracted from BM-MSCs were utilized to treat chondrocytes so as to verify their protective effects on OA. Through online website prediction and experiments confirmation, we found the most significantly enriched miRNA in exosomes and elucidated the effect of this miRNA on the therapeutic effect of exosomes by interfering with its expression. Also, the genes targeted by the miRNA and the involved pathway were also found through bioinformatics analysis and experimental research, thereby probing into the protective mechanism of exosomes on chondrocytes.
    UNASSIGNED: Exosomes derived from BM-MSCs restricted the IL-1β-induced chondrocytes damage. miR-127-3p was found to be enriched in exosomes, and the protective effect of exosomes was reversed by miR-127-3p inhibition. miR-127-3p targeted CDH11, and overexpressed CDH11 in chondrocytes weakened the therapeutic effect of exosomes. IL-1β treatment resulted in the activation of the Wnt/β-catenin pathway in chondrocytes. Exosomes treatment could inhibit the activation of this pathway, and overexpressed CDH11 reversed the inhibitory effect of exosomes on this pathway.
    UNASSIGNED: This study suggests that exosomal miR-127-3p derived from BM-MSCs inhibits CDH11 in chondrocytes, thereby blocking the Wnt/β-catenin pathway activation and relieving chondrocyte damage in OA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Background: Gastric cancer (GC) with peritoneal metastasis has an extremely poor prognosis. Paclitaxel (PTX) intraperitoneal infusion provides an effective treatment for these patients. However, GC patients with peritoneal metastasis who receiving PTX treatments tend to occur PTX-resistance accompany with more aggressive ascites and metastasis. How does this happen is still unknown. Here, we aimed to explore the mechanisms that mediate PTX-resistance and metastasis in GC with peritoneal metastasis. Methods: Ascites samples were collected before PTX infusion and after the relapse in 3 GC patients. To determine the expression of significantly changed proteins, we performed tandem mass tag (TMT) quantitative proteomics. Immunohistochemistry (IHC) staining and western blot were performed to confirm the expression of CDH11 in the PTX-resistant tissues and MKN45P-PR cells. Invasion and migration of GC cells were examined by in vitro transwell and wound healing assays and in vivo dissemination experiments. Results: CDH11 expression was downregulated in the relapsed PTX-resistant ascites, tissues and the PTX-resistant cell line MKN45P-PR. Inhibition of CDH11 expression promoted the invasion, migration and PTX resistance of MKN45P cells, while overexpression of CDH11 repressed these biological functions. Moreover, tumors disseminated in the mice peritoneal cavity induced by MKN45P-PR cells and shCDH11 cells displayed higher metastatic ability and resistance to PTX treatment. Conclusions: Our results reveal that CDH11 is inhibited in the relapsed PTX-resistant patients and the downregulated CDH11 expression promotes GC cell invasion, migration and PTX resistance. CDH11 may have the potential to serve as a predictable marker for the occurrence of PTX resistance in GC patients with peritoneal metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Common venous malformations (VMs) are a frequent sporadic subtype of vascular malformations. Given the TEK and PIK3CA mutations identified, this study aims to investigate the genetic landscape of VMs in the head and neck.
    Patients from published sequencing studies related to common VMs were reviewed. Detailed data regarding clinical characteristics, sequencing strategies, and mutation frequency were synthesized. Lesion distribution of common VMs in the head and neck were further retrospectively analyzed by the pathologic database of the Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People\'s Hospital. For the frequently affected sites in the head and neck, patients were selected for targeted sequencing with a designed vascular malformation-related gene panel or whole exome sequencing. Detected variants were analyzed by classical bioinformatic algorithms (SIFT23, PolyPhen-2 HDIV, LRT, MutationTaster, Mutation Assessor, and GERP++). To confirm the expression pattern of particular candidate gene, specimens were examined histochemically. Gene ontology enrichment analysis and a protein-protein interaction network were also constructed.
    Three hundred patients from eight sequencing studies related to common VMs were reviewed. The total prevalence rates of TEK and PIK3CA mutations were 41.3% and 26.7%, respectively. The most frequent TEK/PIK3CA mutations were TEK-L914F/PIK3CA-H1047R. TEK/PIK3CA mutations existed in 70.3% and 2.7% of VMs in the head and neck. In retrospective data from 649 patients carrying cervicofacial VMs at Shanghai Ninth Hospital, the most frequent sites were the maxillofacial region (lips, cheek, parotid-masseteric region, submandibular region) and the oral and oropharyngeal region (buccal mucosa, tongue). Targeted sequencing for 14 frequent lesions detected TEK variants in three patients (21.4%), but no PIK3CA mutations. On whole exome sequencing of two patients without TEK/PIK3CA mutations, CDH11 was the only shared deleteriously mutated gene. Bioinformatic analyses of CDH11 implied that genes involved in cellular adhesion and junctions formed a significant portion.
    Common VMs of the head and neck have a unique genetic landscape. Novel CDH11 and TEK variants imply that pathogenesis is mediated by the regulatory relationship between endothelial cells and extracellular components.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Transcription factors represent the crucial role of controlling gene transcription in cancer development and progression. However, their functions in gastric cancer have not been thoroughly characterized. For this study, we comprehensively evaluated the correlation between infiltration patterns of tumor microenvironment (TME) cells and TFs expression in the cohort of stomach adenocarcinoma (STAD) from TCGA database. We integrally explored differential expression panel and prognostic value of candidate TFs in TCGA-STAD cohort. Notably, we found a key transcription factor named HEYL, which its expression level was correlated with stromal component transformation of TME. HEYL was regularly high expressed in gastric cancer and correlated with patients\' poor prognosis. Knockdown of HEYL prominently abrogated the tendency of cell proliferation, migration, and progression in gastric cancer. Consistently, overexpression of HEYL strikingly accelerated the gastric carcinoma development through activating oncogenic signaling pathways and transcriptional activation of cadherin 11 (CDH11). Our findings not only identified the close relationship between TFs and TME phenotype, but also emphasized the crucial importance of TFs, especially HEYL, which could be identified as a candidate biomarker to evaluate prognostic risk and therapeutic effect in gastric cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Cadherin-11 (CDH11) is a type II cadherin and reported to function as an oncogene in various cancers. Our present study aims to investigate the role of CDH11 in bladder cancer (BCA).
    METHODS: Bioinformatics analysis was performed in four independent microarray data including 56 non-muscle-invasive bladder cancer (NMIBC) and 132 muscle-invasive bladder cancer (MIBC) tissues from Gene Expression Omnibus to screen out differentially expressed genes. Next, we detected CDH11 expression in BCA specimens and cell lines by qPCR and western blotting assays. Immunohistochemical analyses were performed in 209 paraffin-embedded BCA samples and 30 adjacent normal bladder tissues.
    RESULTS: Bioinformatics analysis revealed that CDH11 had a higher expression level in MIBC tissues than in NMIBC, which was consistent with our clinical BCA specimens and cell lines at both mRNA and protein levels. Immunohistochemical analysis demonstrated that over-expression of CDH11 was closely related to the histological grade, pT status, tumour size and poor outcomes of BCA patients. What\'s more, CDH11 (area under curve (AUC) = 0.673 and 0.735) had a better predictive value than E-cadherin (AUC = 0.629 and 0.629) and a similar discrimination with the European Organization for Research and Treatment of Cancer (EORTC) score system (AUC = 0.719 and 0.667) in evaluating potential recurrence and progression of NMIBC. Moreover, combination of CDH11 and EORTC score system was the best predictive model in predicting recurrence of NMIBC (AUC = 0.779) among the three models.
    CONCLUSIONS: CDH11 was a reliable therapeutic target in BCA and a useful index to predict the possibilities of recurrence and progression in NMIBC patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Metastasis remains the main cause of cancer-related death for gastric cancer (GC) patients, but the mechanisms are poorly understood. Using The Cancer Genome Atlas (TCGA) data base and bioinformatics analyses, we identified C12orf59 might act as a potential oncogenic protein in GC.
    METHODS: We investigate the expression pattern and clinical significance of C12orf59 in two independent cohorts of GC samples. In the training cohort, we used the X-tile program software to generate the optimal cutoff value for C12orf59 expression in order to classify patients accurately according to clinical outcome. In the validation cohort, this derived cutoff score was applied to exam the association of C12orf59 expression with survival outcome. A series of in vivo and in vitro assays were then performed to investigate the function of C12orf59 in GC.
    RESULTS: C12orf59 was significantly upregulated, and associated with poor survival outcome in two cohorts of GC samples. Gain- and loss of- function studies demonstrated C12orf59 promotes GC cell invasive and metastatic capacity both in vitro and in vivo, and induces epithelial-mesenchymal transition and angiogenesis. Mechanically, C12orf59 exerts oncogenic functions by up-regulating CDH11 expression via NF-κB signaling. Interesting, CDH11 could in turn promote NF-κB bind to C12orf59\'s promoter and form a positive feedback loop to sustain the metastatic ability of GC cells. Additionally, downregulation of miR-654-5p is another important mechanism for C12orf59 overexpression in GC.
    CONCLUSIONS: Our finding suggested the newly identified C12orf59/NF-κB/CDH11 feedback loop may represent a new strategy for GC treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Liver fibrosis, an important health condition associated with chronic liver injury that provides a permissive environment for cancer development, is characterized by the persistent deposition of extracellular matrix components that are mainly derived from activated hepatic stellate cells (HSCs). CDH11 belongs to a group of transmembrane proteins that are principally located in adherens junctions. CDH11 mediates homophilic cell-to-cell adhesion, which may promote the development of cirrhosis. The goal of this study was to determine whether CDH11 regulates liver fibrosis and to examine its mechanism by focusing on HSC activation. Here we demonstrate that CDH11 expression is elevated in human and mouse fibrotic liver tissues and that CDH11 mediates the profibrotic response in activated HSCs. Our data indicate that CDH11 regulates the TGFβ-induced activation of HSCs. Moreover, cells from CDH11 deficient mice displayed decreased HSC activation in vitro, and CDH11 deficient mice developed liver fibrogenesis in response to chronic damage induced by CCl4 administration. In addition, CDH11 expression was positively correlated with liver fibrosis in patients with cirrhosis, and could therefore be a prognostic factor in patients with liver fibrosis. Collectively, our findings demonstrate that CDH11 promotes liver fibrosis by activating HSCs and may represent a potential target for anti-fibrotic therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号