Bacterial Proteins

细菌蛋白质类
  • 文章类型: Journal Article
    SakazakiiCronobacter,机会食源性病原体,可能会污染各种食物材料,并导致婴儿出现危及生命的症状。细菌包膜结构有助于细菌环境耐受性,革兰氏阴性细菌中各种生物膜的形成和毒力。DsbA和PepP是与细菌包膜生物发生和稳固性有关的两个重要基因。在这项研究中,在Sakazakii中删除DsbA和PepP,以评估它们对病原体的胁迫耐受性和毒力的贡献。细菌环境抗性分析显示,DsbA和PepP在控制不同培养基中对热和干燥的影响是必不可少的。以及酸,渗透,氧化和胆汁盐应激。DsbA和PepP在调节生物膜形成和运动方面也起着重要作用。此外,DsbA和PepP缺失削弱了Caco-2中的Sakazakii粘附和侵袭、RAW264.7中的细胞内存活和复制。qRT-PCR结果表明,Sakazakii的DsbA和PepP在调节环境胁迫耐受性相关基因的表达中起作用,生物膜的形成,细菌运动和细胞入侵。这些发现表明,DsbA和PepP在环境抗性中起着重要的调节作用,Sakazakii的生物膜形成和毒力,这丰富了对病原体适应性和毒力的遗传决定因素的理解。
    Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大环内酯类抗生素,在临床治疗中至关重要,正面临由大环内酯酯酶等酶介导的抗性挑战,分为Ere型和研究较少的Est型。在这项研究中,我们提供EstX的生化确认,一种Est型大环内酯酯酶,最初在1980年代被鉴定为未知蛋白质。EstX能够水解四种16元环大环内酯,包括两种兽药(泰乐菌素,替地吡松,和替米考星)和人用(白霉素A5)抗生素。它使用来自α/β水解酶超家族的典型催化三联体(Asp233-His261-Ser102)进行酯键水解。进一步的基因组背景分析表明,estX的传播可能是由整合子和转座子等可移动的遗传元件促进的。全球分布研究表明,携带estX基因的细菌,主要致病物种如大肠杆菌,肠沙门氏菌,和肺炎克雷伯菌,流行于6大洲的74个国家。此外,estX基因的出现时间线提示其增殖可能与大环内酯类抗生素的过度使用有关.Est型大环内酯酯酶的广泛流行和传播凸显出迫切需要加强监测和深入研究,强调其作为一个不断升级的公共卫生问题的重要性。
    Macrolide antibiotics, pivotal in clinical therapeutics, are confronting resistance challenges mediated by enzymes like macrolide esterases, which are classified into Ere-type and the less studied Est-type. In this study, we provide the biochemical confirmation of EstX, an Est-type macrolide esterase that initially identified as unknown protein in the 1980s. EstX is capable of hydrolyzing four 16-membered ring macrolides, encompassing both veterinary (tylosin, tidipirosin, and tilmicosin) and human-use (leucomycin A5) antibiotics. It uses typical catalytic triad (Asp233-His261-Ser102) from alpha/beta hydrolase superfamily for ester bond hydrolysis. Further genomic context analysis suggests that the dissemination of estX is likely facilitated by mobile genetic elements such as integrons and transposons. The global distribution study indicates that bacteria harboring the estX gene, predominantly pathogenic species like Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae, are prevalent in 74 countries across 6 continents. Additionally, the emergence timeline of the estX gene suggests its proliferation may be linked to the overuse of macrolide antibiotics. The widespread prevalence and dissemination of Est-type macrolide esterase highlight an urgent need for enhanced monitoring and in-depth research, underlining its significance as an escalating public health issue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镁离子(Mg2+)在利用具有二磷酸基团的底物的II类萜烯环化酶中是至关重要的。有趣的是,这些酶催化不裂解二磷酸基团的反应,而是通过质子化引发反应。在我们最近的研究中,我们在showdoensis链霉菌中发现了一种新型的II类倍半萜环化酶。值得注意的是,我们确定了其晶体结构,并在其活性位点内鉴定了Mg2。这一发现揭示了先前难以捉摸的II类萜烯环化酶中Mg2结合的问题。在这一章中,我们概述了我们发现这种新型酶的方法,包括其纯化步骤,结晶,和动力学分析。
    Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    幽门螺杆菌引起全球流行的感染,与慢性胃炎甚至胃癌的发展高度相关。随着抗生素耐药性的增加,科学家们已经开始寻找更好的疫苗设计策略来根除幽门螺杆菌定植。然而,虽然目前的策略更喜欢用单一的幽门螺杆菌抗原配制疫苗,他们的潜力尚未充分发挥。外膜囊泡(OMV)是潜在的平台,因为它们可以递送多种抗原。在这项研究中,我们设计了三种关键的幽门螺杆菌抗原蛋白(UreB,卡加,和VacA)到源自鼠伤寒沙门氏菌的OMV表面(S.使用血红蛋白蛋白酶(Hbp)自转运蛋白系统的鼠伤寒)突变菌株。在各种淘汰赛策略中,我们发现,从ΔrfbPΔfliCΔfljBΔompA突变体中分离出的OMV可以引起免疫球蛋白G(IgG)和A(IgA)水平的明显增加,并有效地触发T辅助细胞1-和17-偏向的细胞免疫反应,在预防幽门螺杆菌方面发挥着至关重要的作用。接下来,衍生自ΔrfbPΔfliCΔfljBΔompA突变体的OMV用作载体以递送幽门螺杆菌抗原的不同组合。小鼠模型中的抗体和细胞因子水平以及攻击实验表明,共同递送UreB和CagA可以保护免受幽门螺杆菌和抗原特异性T细胞应答。总之,从鼠伤寒沙门氏菌ΔrfbPΔfliCΔfljBΔompA突变株作为载体,同时使用Hbp自转运蛋白系统导入幽门螺杆菌UreB和CagA作为抗原蛋白,将大大有利于控制幽门螺杆菌感染。
    外膜囊泡(OMV),作为一种新型的抗原递送平台,已用于各种病原体甚至肿瘤的疫苗设计。肠病沙门氏菌(S.鼠伤寒),作为一种易于工程化并具有佐剂功效和免疫刺激能力的细菌,已成为继大肠杆菌之后纯化OMV的首选细菌载体。本研究的重点是幽门螺杆菌的设计;(H.幽门螺杆菌)疫苗,利用基因修饰的沙门氏菌OMV呈递幽门螺杆菌的几种主要抗原,包括UreB,VacA和CagA.筛选并鉴定了最佳的沙门氏菌OMV递送载体和抗原组合,为H.pylori疫苗的开发提供了新的思路,并为其他难以开发的细菌疫苗提供了一个集成的抗原递送平台,病毒,甚至肿瘤。
    Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.
    Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,通过低聚果糖(FOS)和低聚半乳糖(GOS)培养的动物双歧杆菌的转录组测序和非靶向代谢组学技术,研究了双歧杆菌对寡糖的利用机制。结果表明,FOS通过增加msmE的表达水平影响三磷酸腺苷结合转运体(ABC转运体)的合成,msmG,还有gluA.同样,GOS通过上调tRNA-Ala的表达来改善氨酰-tRNA合成酶,tRNA-Pro,和tRNA-Met.用FOS和GOS培养的动物双歧杆菌产生不同的代谢产物,比如组胺,酒石酸,去甲肾上腺素,具有抑制炎症的功能,缓解抑郁症和与大脑和神经系统有关的疾病,保持身体健康。此外,转录组和代谢组分析结果表明,FOS和GOS通过调节碳水化合物的相关途径促进动物双歧杆菌的生长和代谢,能源,和氨基酸代谢。总的来说,实验结果为FOS和GOS的益生元效应提供了重要的见解。
    In this study, the utilization mechanism of oligosaccharides by Bifidobacterium was investigated through the transcriptome sequencing and non-targeted metabolomics technology of Bifidobacterium animalis cultured with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS). The results showed that FOS affected the synthesis of adenosine triphosphate binding transporters (ABC transporters) by increasing the expression levels of msmE, msmG, and gluA. Similarly, GOS improved aminoacyl-tRNA synthases by upregulating the expression of tRNA-Ala, tRNA-Pro, and tRNA-Met. Bifidobacterium animalis cultured with FOS and GOS produced different metabolites, such as histamine, tartaric acid, and norepinephrine, with the functions of inhibiting inflammation, alleviating depression and diseases related to brain and nervous system and maintaining body health. Furthermore, the transcriptome and metabolome analysis results revealed that FOS and GOS promoted the growth and metabolism of Bifidobacterium animalis by regulating the related pathways of carbohydrate, energy, and amino acid metabolism. Overall, the experimental results provided significant insights into the prebiotic effects of FOS and GOS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化脓性梭菌是一种重要的机会致病菌,广泛分布于环境中。溶血素(PLO)是化脓性产热杆菌的主要毒力因子并且能够裂解许多不同的细胞。PLO是胆固醇依赖性细胞溶素(CDC)家族的成员,其一级结构仅与其他成员的同源性较低,为31%至45%。通过深入研究巴解组织,我们可以了解CDC家族蛋白的整体致病机制。本研究建立了感染重组PLO(rPLO)及其单点突变的小鼠肌肉组织模型,rPLON139K和rPLOF240A,探讨其引起炎症损伤的机制。与rPLO相比,rPLON139K和rPLOF240A的炎性损伤能力显著降低。本研究通过详细检查PLO的单位点突变,阐述了PLO的炎症机制。我们的数据也为今后毒素和细菌的研究提供了理论基础和现实意义。
    Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄曲霉毒素B1(AFB1)沾染严重威逼营养平安和公共卫生。我们实验室先前报道的地衣芽孢杆菌ANSB821的CotA漆酶显示出在没有氧化还原介质的情况下降解AFB1的巨大潜力。然而,由于其催化效率低和表达水平低,因此使用这种CotA-漆酶去除动物饲料中的AFB1受到限制。为了更好地利用这种优异的酶有效降解AFB1,通过定点诱变构建了12个CotA-漆酶突变体。在这些突变体中,E186A和E186R对AFB1的降解能力最好,12h内降解率分别为82.2%和91.8%,比野生型CotA漆酶高1.6倍和1.8倍,分别。E186A和E186R的催化效率(kcat/Km)分别为1.8和3.2倍,分别,比野生型CotA漆酶的那些。然后构建具有优化信号肽的表达载体pPICZαA-N-E186A和pPICZαA-N-E186R,并将其转化到毕赤酵母GS115中。优化的信号肽改善了毕赤酵母GS115中E186A和E186R的分泌表达。总的来说,本研究为食品和动物饲料中AFB1解毒提供了理想的候选CotA-漆酶突变体,并提供了可行的方案,这是工业生产CotA漆酶迫切需要的。
    Aflatoxin B1 (AFB1) contamination is a serious threat to nutritional safety and public health. The CotA-laccase from Bacillus licheniformis ANSB821 previously reported by our laboratory showed great potential to degrade AFB1 without redox mediators. However, the use of this CotA-laccase to remove AFB1 in animal feed is limited because of its low catalytic efficiency and low expression level. In order to make better use of this excellent enzyme to effectively degrade AFB1, twelve mutants of CotA-laccase were constructed by site-directed mutagenesis. Among these mutants, E186A and E186R showed the best degradation ability of AFB1, with degradation ratios of 82.2% and 91.8% within 12 h, which were 1.6- and 1.8-times higher than those of the wild-type CotA-laccase, respectively. The catalytic efficiencies (kcat/Km) of E186A and E186R were found to be 1.8- and 3.2-times higher, respectively, than those of the wild-type CotA-laccase. Then the expression vectors pPICZαA-N-E186A and pPICZαA-N-E186R with an optimized signal peptide were constructed and transformed into Pichia pastoris GS115. The optimized signal peptide improved the secretory expressions of E186A and E186R in P. pastoris GS115. Collectively, the current study provided ideal candidate CotA-laccase mutants for AFB1 detoxification in food and animal feed and a feasible protocol, which was desperately needed for the industrial production of CotA-laccases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在大肠杆菌中脂质A生物合成的Raetz途径中的许多酶是必需的。已知铜绿假单胞菌中的同源蛋白Pa1792|LpxH补充了大肠杆菌中LpxH的损失。全基因组转座子插入测序分析表明lpxH在铜绿假单胞菌中是必需的。然而,尚未进行铜绿假单胞菌中lpxH的遗传分析,部分原因是必需基因的条件等位基因不容易构建。在这项研究中,我们首先在铜绿假单胞菌PAO1中构建了基于质粒的温度敏感突变体ΔlpxH/pTS-lpxH或lpxH(Ts)。点电镀分析表明lpxH(Ts)在限制性温度下是致命的,确认其增长的重要性。显微分析表明,lpxH(Ts)表现出椭圆形的形态,这表明棒状形成需要lpxH。SDS-PAGE和Western印迹分析显示lpxH(Ts)未能合成脂质A,与其在脂质A生物合成中的功能一致。lpxH而非同源同工酶lpxI或lpxG的强表达阻碍了生长并导致细胞裂解,这意味着铜绿假单胞菌的这种毒性作用需要lpxH特异性辅因子。一起,我们的结果表明,lpxH对脂质A的生物合成至关重要,杆状生长,和在铜绿假单胞菌中的生存力。我们认为,这种基于质粒的条件等位基因是铜绿假单胞菌必需基因遗传研究的有用工具。
    Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential in P. aeruginosa. However, genetic analysis of lpxH in P. aeruginosa has not been carried out, partly because the conditional alleles of essential genes are not readily constructed. In this study, we first constructed a plasmid-based temperature-sensitive mutant ΔlpxH/pTS-lpxH or lpxH(Ts) in P. aeruginosa PAO1. Spot-plating assay indicated that lpxH(Ts) was lethal at a restrictive temperature, confirming its essentiality for growth. Microscopic analysis revealed that lpxH(Ts) exhibited an oval-shaped morphology, suggesting that lpxH was required for rod-shape formation. SDS-PAGE and Western blotting analysis showed that lpxH(Ts) failed to synthesize lipid A, consistent with its function in lipid A biosynthesis. Strong expression of lpxH but not the non-homologous isoenzyme lpxI or lpxG impeded growth and caused cell lysis, implying that lpxH-specific cofactors were required for this toxic effect in P. aeruginosa. Together, our results demonstrate that lpxH is essential for lipid A biosynthesis, rod-shaped growth, and viability in P. aeruginosa. We propose that this plasmid-based conditional allele is a useful tool for the genetic study of essential genes in P. aeruginosa.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    白藜芦醇,苯丙素类化合物,表现出不同的药理特性,使其成为健康和疾病管理的宝贵候选人。然而,对白藜芦醇的需求超过了植物提取方法的能力,需要替代生产战略。与基于植物的方法相比,微生物合成具有若干优势,并提出了有希望的替代方案。Yarrowialipolytica由于其安全的性质而在微生物宿主中脱颖而出,丰富的乙酰辅酶A和丙二酰辅酶A可用性,和强大的磷酸戊糖途径。本研究旨在设计Y.Lipolytica用于白藜芦醇生产。白藜芦醇生物合成途径被整合到Y中。通过添加编码来自谷红酵母的酪氨酸氨裂解酶的基因,来自烟草的4-香豆酸CoA连接酶,和葡萄的二苯乙烯合成酶。这导致产生14.3mg/L白藜芦醇。引入内源性和外源性丙二酰辅酶A生物合成模块的组合以增强丙二酰辅酶A的可用性。这包括编码来自拟南芥的乙酰辅酶A羧化酶2的基因,丙二酰辅酶A合成酶,和一种来自重氮根瘤菌的丙二酸转运蛋白。这些策略将白藜芦醇的产量增加到51.8mg/L。发酵条件的进一步优化和利用蔗糖作为YP培养基中的有效碳源,使白藜芦醇在烧瓶发酵中的浓度提高到141mg/L。通过结合这些策略,我们在受控补料分批生物反应器中实现了400mg/L白藜芦醇的滴度。这些发现证明了Y.lipolytica作为从头生产白藜芦醇的平台的功效,并强调了代谢工程的重要性。提高丙二酰辅酶A的可用性,和培养基优化以提高白藜芦醇的产量。
    Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多重耐药金黄色葡萄球菌感染需要新型抗生素的开发。D-3263,一种瞬时受体电位美司他丁成员8(TRPM8)激动剂,具有潜在的抗肿瘤特性。这里,我们报道了D-3263的抗菌和抗生物膜活性。对金黄色葡萄球菌的最低抑制浓度(MIC),粪肠球菌和屎肠球菌≤50µM。D-3263在4×MIC时对临床耐甲氧西林金黄色葡萄球菌(MRSA)和粪肠球菌菌株表现出杀菌作用。亚抑制D-3263浓度有效抑制金黄色葡萄球菌和粪肠球菌生物膜,用较高的浓度也清除成熟的生物膜。蛋白质组学分析显示29种蛋白质在1/2×MICD-3263下的差异表达,影响氨基酸的生物合成和碳水化合物的代谢。此外,D-3263增强金黄色葡萄球菌和粪肠球菌的膜通透性。细菌膜磷脂磷脂磷脂酰乙醇胺(PE),磷脂酰甘油(PG),和心磷脂(CL)剂量依赖性增加D-3263MIC。总的来说,我们的数据表明,D-3263通过靶向细胞膜对金黄色葡萄球菌表现出有效的抗菌和抗生物膜活性.
    Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号