γ-radiation

γ - 辐射
  • 文章类型: Journal Article
    Clodronate-liposomes (Clod-Lip) is an effective candidate drug for treating chronic myelomonocytic leukemia, autoimmune hemolytic anemia and immune thrombocytopenic purpura in mice experiments. But its role in hematopoietic recovery after acute myelosuppression is still unknown. We aim to explore the function and underlining mechanisms of Clod-Lip on hematopoietic reconstitution after sublethal dose irradiation in mice.
    Mice at 8-10 weeks received a total-body sublethal dose γ-irradiation (TBI) and injected with Clod-Lip or PBS-Liposomes (PBS-Lip) every 4 days after TBI. The survival rate of each group was recorded. Flow cytometry was used to analyze changes in hematopoietic stem cells and their progenies in bone marrow. ELISA and RT-qPCR were used for the analysis of hematopoietic regulatory factors. Regarding IL-1β inhibition, 25 mg/kg diacerein or an equal volume of DMSO was intraperitoneally injected into mice every day after TBI.
    In sublethal dose-irradiated mice, Clod-Lip reduced the survival rate, the total number of bone marrow and hematopoietic stem cells, delayed peripheral blood recovery of red blood cells and platelets. However, it could increase the number of CMP, MEP and myeloid cells, which suggested that Clod-Lip could induce HSC to myeloid differentiation in vivo. We further verified that Clod-Lip may induce myeloid differentiation by bone marrow microenvironmental factor IL-1β.
    In summary, this study suggested that Clod-Lip may aggravate inhibitor effect of hematopoietic function and promote myeloid differentiation in myelosuppression mice model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    The objective of this study was to explore the action and mechanism of immediate early response gene 5 (IER5) on the apoptosis induced by irradiation combined with cisplatin in HeLa cells. The IER5 gene was knocked down using IER5-specific small interfering (si)RNA to generate HeLa cells stably expressing low levels of IER5 (HeLa-siIER5). Apoptosis was induced by 60Co γ-radiation, cisplatin, and radiation combined with cisplatin. Apoptosis and cell viability were evaluated by flow cytometry and Cell Counting Kit-8, respectively. Protein expression was determined by western blotting. Apoptosis was significantly inhibited in HeLa-siIER5 cells after γ-radiation combined with cisplatin exposure compared with siRNA control cells (P < 0.01). We also found that the expression of Bcl-2 was increased, and the levels of cleaved caspase-9 and cleaved PARP were reduced after γ-radiation combined with cisplatin treatment of HeLa-siIER5 cells. These results indicated that decreased expression of IER5 can reduce apoptosis induced by exposure to γ-radiation combined with cisplatin. Enhancing the expression of IER5 in tumor cells, and reducing its expression in normal cells, may be utilized as targeting strategies to improve the outcomes of chemo/radiotherapy for the treatment of patients with cervical cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Quantum dots (QDs) have attracted great attention due to their unique optical properties. High fluorescence efficiency is very important for their practical application. In this study, we report a simple and efficient strategy to enhance the photoluminescence of water-dispersed thiol-capped QDs using γ-radiation. Three kinds of QDs with different surface ligands and cores (MPA-CdTe, MPA-CdSe and Cys-CdTe) were fabricated and irradiated by high-energy γ-ray in an aqueous solution. Their photoluminescence intensities were significantly enhanced after irradiation, which were closely related to the radiation dose and the structure of QDs. The positions of the fluorescence emission peaks did not shift obviously after irradiation. The mechanism of photoluminescence enhancement was discussed based on the results of photoluminescence (PL) spectra, UV-visible light absorption (UV-vis) spectra, transmission electron microscope (TEM), X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). This method can be employed to uniformly treat large batches of QDs at room temperature and without other chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Salvianolic acid B (SB) is an antioxidant derived from Salvia militarize, and is one of the most widely used herbs in traditional Chinese medicine. SB is a potent antioxidant that has been well documented as a scavenger of oxygen free radicals, and has been used for the prevention and treatment of atherosclerosis‑associated disorders. To explore its potential therapeutic effects in treating radiation damage, in this study, mice were treated with SB at different doses of 5, 12.5 and 20 mg/kg, subsequent to receiving γ‑irradiation. The effects of SB on peripheral blood, bone marrow nucleated cells, spleen and thymus indices, and oxidation resistance were evaluated in both radiated mice and control groups. The results indicated that SB significantly increased the counts of peripheral white blood cells, red blood cells and platelets. The number of nucleated cells in the bone marrow and the level of protein increased as well. In addition, improved spleen and thymus indices in the bone marrow were observed. SB treatment additionally reversed the deterioration of both the thymus and spleen indices, which is associated with increased serum superoxide dismutase activity and decreasing malondialdehyde levels via nuclear factor (erythroid‑derived 2)‑like 2 protein/BTB and CNC homology 1 mediated antioxidant effect. Furthermore, ROS levels and Bax protein expression were also suppressed by SB. The data suggested that SB is effective in protecting mice from γ‑radiation injury, and could potentially be applicable for clinical use. Notably, the present study identified a promising candidate drug for enhancing the hematopoietic and immune systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pine polyphenols (PPs) are bioactive dietary constituents that enhance health and help prevent diseases through antioxidants. Antioxidants reduce the level of oxidative damages caused by ionizing radiation (IR). The main purpose of this paper is to study the protective effect of PPs on peripheral blood, liver and spleen injuries in mice induced by IR. ICR (Institute of Cancer Research) male mice were administered orally with PPs (200 mg/kg b.wt.) once daily for 14 consecutive days prior to 7 Gy γ-radiations. PPs showed strong antioxidant activities. PPs significantly increased white blood cells, red blood cells and platelets counts. PPs also significantly reduced lipid peroxidation and increased the activities of superoxide dismutase, catalase and glutathione peroxidases, and the level of glutathione. PPs reduced the spleen morphologic injury. In addition, PPs inhibited mitochondria-dependent apoptosis pathways in splenocytes induced by IR. These results indicate that PPs are radioprotective promising reagents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号