vegetation change

植被变化
  • 文章类型: Journal Article
    Globally, ecosystems are subjected to prolonged droughts and extreme heat events, leading to forest die-offs and dominance shifts in vegetation. Some scientists and managers view soil as the main resource to be considered in monitoring ecosystem responses to aridification. As the medium through which precipitation is received, stored, and redistributed for plant use, soil is an important factor in the sensitivity of ecosystems to a drying climate. This study presents a novel approach to evaluating where on a landscape soils may be most sensitive to drying, making them less resilient to disturbance, and where potential future vegetation changes could lead to such disturbance. The drying and devegetation of arid lands can increase wind erosion, contributing to aerosol and dust emissions. This has implications for air quality, human health, and water resources. This approach combines soil data with vegetation simulations, projecting future vegetation change, to create maps of potential areas of concern for soil sensitivity and dust production in a drying climate. Consistent with recent observations, the projections show shifts from grasslands and woodlands to shrublands in much of the southwestern region. An increase in forested area occurs, but shifts in the dominant types and spatial distribution of the forests also are seen. A net increase in desert ecosystems in the region and some changes in alpine and tundra ecosystems are seen. Approximately 124,000 km(2) of soils flagged as \"sensitive\" are projected to have vegetation change between 2041 and 2050, and 82,927 km(2) of soils may become sensitive because of future vegetation changes. These maps give managers a way to visualize and identify where soils and vegetation should be investigated and monitored for degradation in a drying climate, so restoration and mitigation strategies can be focused in these areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号